BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

245 related articles for article (PubMed ID: 28717965)

  • 1. Genomic properties of chromosomal bands are linked to evolutionary rearrangements and new centromere formation in primates.
    Federico C; Pappalardo AM; Ferrito V; Tosi S; Saccone S
    Chromosome Res; 2017 Oct; 25(3-4):261-276. PubMed ID: 28717965
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chromosome 6 phylogeny in primates and centromere repositioning.
    Eder V; Ventura M; Ianigro M; Teti M; Rocchi M; Archidiacono N
    Mol Biol Evol; 2003 Sep; 20(9):1506-12. PubMed ID: 12832646
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Primate chromosome evolution: with reference to marker order and neocentromeres.
    Stanyon R; Bigoni F
    Genetika; 2010 Sep; 46(9):1226-33. PubMed ID: 21058511
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fluorescence in situ hybridization to chromosomes as a tool to understand human and primate genome evolution.
    Wienberg J
    Cytogenet Genome Res; 2005; 108(1-3):139-60. PubMed ID: 15545725
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The interplay between genome organization and nuclear architecture of primate evolutionary neo-centromeres.
    Lomiento M; Grasser F; Rocchi M; Müller S
    Genomics; 2013 Oct; 102(4):288-95. PubMed ID: 23648727
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Primate chromosome evolution: ancestral karyotypes, marker order and neocentromeres.
    Stanyon R; Rocchi M; Capozzi O; Roberto R; Misceo D; Ventura M; Cardone MF; Bigoni F; Archidiacono N
    Chromosome Res; 2008; 16(1):17-39. PubMed ID: 18293103
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evolutionary new centromeres in primates.
    Rocchi M; Stanyon R; Archidiacono N
    Prog Mol Subcell Biol; 2009; 48():103-52. PubMed ID: 19521814
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evolutionary molecular cytogenetics of catarrhine primates: past, present and future.
    Stanyon R; Rocchi M; Bigoni F; Archidiacono N
    Cytogenet Genome Res; 2012; 137(2-4):273-84. PubMed ID: 22710640
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Recurrent sites for new centromere seeding.
    Ventura M; Weigl S; Carbone L; Cardone MF; Misceo D; Teti M; D'Addabbo P; Wandall A; Björck E; de Jong PJ; She X; Eichler EE; Archidiacono N; Rocchi M
    Genome Res; 2004 Sep; 14(9):1696-703. PubMed ID: 15342555
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Studies on karyotype evolution in higher primates in relation to human chromosome 14 and 9 by comparative mapping of immunoglobulin C epsilon genes with fluorescence in situ hybridization.
    Tanabe H
    Kokuritsu Iyakuhin Shokuhin Eisei Kenkyusho Hokoku; 1999; (117):77-90. PubMed ID: 10859938
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phylogeny of horse chromosome 5q in the genus Equus and centromere repositioning.
    Piras FM; Nergadze SG; Poletto V; Cerutti F; Ryder OA; Leeb T; Raimondi E; Giulotto E
    Cytogenet Genome Res; 2009; 126(1-2):165-72. PubMed ID: 20016166
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Breakpoint analysis of the pericentric inversion distinguishing human chromosome 4 from the homologous chromosome in the chimpanzee (Pan troglodytes).
    Kehrer-Sawatzki H; Sandig C; Chuzhanova N; Goidts V; Szamalek JM; Tänzer S; Müller S; Platzer M; Cooper DN; Hameister H
    Hum Mutat; 2005 Jan; 25(1):45-55. PubMed ID: 15580561
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Inter- and intra-specific gene-density-correlated radial chromosome territory arrangements are conserved in Old World monkeys.
    Tanabe H; Küpper K; Ishida T; Neusser M; Mizusawa H
    Cytogenet Genome Res; 2005; 108(1-3):255-61. PubMed ID: 15545738
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Eight million years of maintained heterozygosity in chromosome homologs of cercopithecine monkeys.
    Tolomeo D; Capozzi O; Chiatante G; Sineo L; Ishida T; Archidiacono N; Rocchi M; Stanyon R
    Chromosoma; 2020 Mar; 129(1):57-67. PubMed ID: 31925526
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chromosomal evolution in primates: tentative phylogeny from Microcebus murinus (Prosimian) to man.
    Dutrillaux B
    Hum Genet; 1979 May; 48(3):251-314. PubMed ID: 112030
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A non-human primate BAC resource to study interchromosomal segmental duplications.
    Kirsch S; Hodler C; Schempp W
    Cytogenet Genome Res; 2009; 125(4):253-9. PubMed ID: 19864887
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evolutionary history of chromosome 10 in primates.
    Carbone L; Ventura M; Tempesta S; Rocchi M; Archidiacono N
    Chromosoma; 2002 Nov; 111(4):267-72. PubMed ID: 12424526
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Distinct retroelement classes define evolutionary breakpoints demarcating sites of evolutionary novelty.
    Longo MS; Carone DM; ; Green ED; O'Neill MJ; O'Neill RJ
    BMC Genomics; 2009 Jul; 10():334. PubMed ID: 19630942
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evolutionarily conserved, cell type and species-specific higher order chromatin arrangements in interphase nuclei of primates.
    Neusser M; Schubel V; Koch A; Cremer T; Müller S
    Chromosoma; 2007 Jun; 116(3):307-20. PubMed ID: 17318634
    [TBL] [Abstract][Full Text] [Related]  

  • 20. 7E olfactory receptor gene clusters and evolutionary chromosome rearrangements.
    Yue Y; Haaf T
    Cytogenet Genome Res; 2006; 112(1-2):6-10. PubMed ID: 16276084
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.