These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Top-down feature-based selection of matching features for audio-visual synchrony discrimination. Fujisaki W; Nishida S Neurosci Lett; 2008 Mar; 433(3):225-30. PubMed ID: 18281153 [TBL] [Abstract][Full Text] [Related]
3. Differential inter-trial effects in the visual search of children, adolescents, and young adults. An J; Wen W; Wu Z; Wan X Acta Psychol (Amst); 2018 Nov; 191():171-178. PubMed ID: 30286429 [TBL] [Abstract][Full Text] [Related]
4. Effect of local fluency gradient of objects creates search asymmetry. Yamashita J; Kumada T Atten Percept Psychophys; 2019 Jan; 81(1):71-84. PubMed ID: 30141124 [TBL] [Abstract][Full Text] [Related]
5. Selecting and ignoring salient objects within and across dimensions in visual search. Schubö A; Müller HJ Brain Res; 2009 Aug; 1283():84-101. PubMed ID: 19501066 [TBL] [Abstract][Full Text] [Related]
6. Spontaneous visual search during the first two years: Improvement with age but no evidence of efficient search. Goldknopf EJ; Gillespie-Lynch K; Marroquín AD; Nguyen BD; Johnson SP Infant Behav Dev; 2019 Nov; 57():101331. PubMed ID: 31306884 [TBL] [Abstract][Full Text] [Related]
7. Visual search in children and adults: top-down and bottom-up mechanisms. Donnelly N; Cave K; Greenway R; Hadwin JA; Stevenson J; Sonuga-Barke E Q J Exp Psychol (Hove); 2007 Jan; 60(1):120-36. PubMed ID: 17162511 [TBL] [Abstract][Full Text] [Related]
8. Top-down modulation of visual and auditory cortical processing in aging. Guerreiro MJ; Eck J; Moerel M; Evers EA; Van Gerven PW Behav Brain Res; 2015 Feb; 278():226-34. PubMed ID: 25300470 [TBL] [Abstract][Full Text] [Related]
13. Greater frontal-parietal synchrony at low gamma-band frequencies for inefficient than efficient visual search in human EEG. Phillips S; Takeda Y Int J Psychophysiol; 2009 Sep; 73(3):350-4. PubMed ID: 19481120 [TBL] [Abstract][Full Text] [Related]
14. Involuntary attentional capture by task-irrelevant objects that match the search template for category detection in natural scenes. Reeder RR; van Zoest W; Peelen MV Atten Percept Psychophys; 2015 May; 77(4):1070-80. PubMed ID: 25810159 [TBL] [Abstract][Full Text] [Related]
15. Learning by selection: visual search and object perception in young infants. Amso D; Johnson SP Dev Psychol; 2006 Nov; 42(6):1236-45. PubMed ID: 17087555 [TBL] [Abstract][Full Text] [Related]
16. Size congruity influences visual search via the target template. Sobel KV; Puri AM Acta Psychol (Amst); 2018 Feb; 183():66-74. PubMed ID: 29351863 [TBL] [Abstract][Full Text] [Related]
17. The role of precues in the preparation of motor responses in humans. Eversheim U; Bock O J Mot Behav; 2002 Sep; 34(3):271-6. PubMed ID: 19260177 [TBL] [Abstract][Full Text] [Related]
18. Feature specificity in attentional capture by size and color. Harris AM; Remington RW; Becker SI J Vis; 2013 May; 13(3):. PubMed ID: 23650630 [TBL] [Abstract][Full Text] [Related]
19. Impairments in top down attentional processes in right parietal patients: paradoxical functional facilitation in visual search. Mangano GR; Oliveri M; Turriziani P; Smirni D; Zhaoping L; Cipolotti L Vision Res; 2014 Apr; 97():74-82. PubMed ID: 24582796 [TBL] [Abstract][Full Text] [Related]
20. Hybrid foraging search: Searching for multiple instances of multiple types of target. Wolfe JM; Aizenman AM; Boettcher SE; Cain MS Vision Res; 2016 Feb; 119():50-9. PubMed ID: 26731644 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]