BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 28718413)

  • 21. Identification of coding and non-coding mutational hotspots in cancer genomes.
    Piraino SW; Furney SJ
    BMC Genomics; 2017 Jan; 18(1):17. PubMed ID: 28056774
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Next generation sequencing reveals genetic landscape of hepatocellular carcinomas.
    Li S; Mao M
    Cancer Lett; 2013 Nov; 340(2):247-53. PubMed ID: 23063663
    [TBL] [Abstract][Full Text] [Related]  

  • 23. How evolution of genomes is reflected in exact DNA sequence match statistics.
    Massip F; Sheinman M; Schbath S; Arndt PF
    Mol Biol Evol; 2015 Feb; 32(2):524-35. PubMed ID: 25398628
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Somatic mutation in cancer and normal cells.
    Martincorena I; Campbell PJ
    Science; 2015 Sep; 349(6255):1483-9. PubMed ID: 26404825
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Cancer genomics: Hard-to-reach repairs.
    Khurana E
    Nature; 2016 Apr; 532(7598):181-2. PubMed ID: 27075092
    [No Abstract]   [Full Text] [Related]  

  • 26. Genome-wide quantification of rare somatic mutations in normal human tissues using massively parallel sequencing.
    Hoang ML; Kinde I; Tomasetti C; McMahon KW; Rosenquist TA; Grollman AP; Kinzler KW; Vogelstein B; Papadopoulos N
    Proc Natl Acad Sci U S A; 2016 Aug; 113(35):9846-51. PubMed ID: 27528664
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Understanding genomic alterations in cancer genomes using an integrative network approach.
    Wang E
    Cancer Lett; 2013 Nov; 340(2):261-9. PubMed ID: 23266571
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Exploring background mutational processes to decipher cancer genetic heterogeneity.
    Goncearenco A; Rager SL; Li M; Sang QX; Rogozin IB; Panchenko AR
    Nucleic Acids Res; 2017 Jul; 45(W1):W514-W522. PubMed ID: 28472504
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Differential DNA repair underlies mutation hotspots at active promoters in cancer genomes.
    Perera D; Poulos RC; Shah A; Beck D; Pimanda JE; Wong JW
    Nature; 2016 Apr; 532(7598):259-63. PubMed ID: 27075100
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The complex interplay between cell-intrinsic and cell-extrinsic factors driving the evolution of chronic lymphocytic leukemia.
    Sutton LA; Rosenquist R
    Semin Cancer Biol; 2015 Oct; 34():22-35. PubMed ID: 25963298
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Predictive genomics: a cancer hallmark network framework for predicting tumor clinical phenotypes using genome sequencing data.
    Wang E; Zaman N; Mcgee S; Milanese JS; Masoudi-Nejad A; O'Connor-McCourt M
    Semin Cancer Biol; 2015 Feb; 30():4-12. PubMed ID: 24747696
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Parental influence on human germline de novo mutations in 1,548 trios from Iceland.
    Jónsson H; Sulem P; Kehr B; Kristmundsdottir S; Zink F; Hjartarson E; Hardarson MT; Hjorleifsson KE; Eggertsson HP; Gudjonsson SA; Ward LD; Arnadottir GA; Helgason EA; Helgason H; Gylfason A; Jonasdottir A; Jonasdottir A; Rafnar T; Frigge M; Stacey SN; Th Magnusson O; Thorsteinsdottir U; Masson G; Kong A; Halldorsson BV; Helgason A; Gudbjartsson DF; Stefansson K
    Nature; 2017 Sep; 549(7673):519-522. PubMed ID: 28959963
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Population sequencing data reveal a compendium of mutational processes in the human germ line.
    Seplyarskiy VB; Soldatov RA; Koch E; McGinty RJ; Goldmann JM; Hernandez RD; Barnes K; Correa A; Burchard EG; Ellinor PT; McGarvey ST; Mitchell BD; Vasan RS; Redline S; Silverman E; Weiss ST; Arnett DK; Blangero J; Boerwinkle E; He J; Montgomery C; Rao DC; Rotter JI; Taylor KD; Brody JA; Chen YI; de Las Fuentes L; Hwu CM; Rich SS; Manichaikul AW; Mychaleckyj JC; Palmer ND; Smith JA; Kardia SLR; Peyser PA; Bielak LF; O'Connor TD; Emery LS; ; ; Gilissen C; Wong WSW; Kharchenko PV; Sunyaev S
    Science; 2021 Aug; 373(6558):1030-1035. PubMed ID: 34385354
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Linking the DNA strand asymmetry to the spatio-temporal replication program. I. About the role of the replication fork polarity in genome evolution.
    Baker A; Julienne H; Chen CL; Audit B; d'Aubenton-Carafa Y; Thermes C; Arneodo A
    Eur Phys J E Soft Matter; 2012 Sep; 35(9):92. PubMed ID: 23001787
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Tempo and mode of genomic mutations unveil human evolutionary history.
    Hara Y
    Genes Genet Syst; 2015; 90(3):123-31. PubMed ID: 26510567
    [TBL] [Abstract][Full Text] [Related]  

  • 36. From context-dependence of mutations to molecular mechanisms of mutagenesis.
    Rogozin IB; Malyarchuk BA; Pavlov YI; Milanesi L
    Pac Symp Biocomput; 2005; ():409-20. PubMed ID: 15759646
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Whole-exome sequencing reveals recurrent somatic mutation networks in cancer.
    Liu X; Wang J; Chen L
    Cancer Lett; 2013 Nov; 340(2):270-6. PubMed ID: 23153794
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Yeast evolution and comparative genomics.
    Liti G; Louis EJ
    Annu Rev Microbiol; 2005; 59():135-53. PubMed ID: 15877535
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Evolution of the cancer genome.
    Yates LR; Campbell PJ
    Nat Rev Genet; 2012 Nov; 13(11):795-806. PubMed ID: 23044827
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Cancer omics: from regulatory networks to clinical outcomes.
    Tang B; Hsu PY; Huang TH; Jin VX
    Cancer Lett; 2013 Nov; 340(2):277-83. PubMed ID: 23201140
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.