BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

209 related articles for article (PubMed ID: 28718516)

  • 1. Control of the Fluid Viscosity in a Mock Circulation.
    Boës S; Ochsner G; Amacher R; Petrou A; Meboldt M; Schmid Daners M
    Artif Organs; 2018 Jan; 42(1):68-77. PubMed ID: 28718516
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The effect of fluid viscosity on the hemodynamic energy changes during operation of the pulsatile ventricular assist device.
    Ahn CB; Son KH; Lee JJ; Choi J; Song SJ; Jung JS; Lee SH; Son HS; Sun K
    Artif Organs; 2011 Nov; 35(11):1123-6. PubMed ID: 21954946
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Noninvasive average flow estimation for an implantable rotary blood pump: a new algorithm incorporating the role of blood viscosity.
    Malagutti N; Karantonis DM; Cloherty SL; Ayre PJ; Mason DG; Salamonsen RF; Lovell NH
    Artif Organs; 2007 Jan; 31(1):45-52. PubMed ID: 17209960
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sensorless flow and head estimation in the VentrAssist rotary blood pump.
    Ayre PJ; Vidakovic SS; Tansley GD; Watterson PA; Lovell NH
    Artif Organs; 2000 Aug; 24(8):585-8. PubMed ID: 10971241
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Accuracy of the HVAD Pump Flow Estimation Algorithm.
    Reyes C; Voskoboynikov N; Chorpenning K; LaRose JA; Brown MC; Nunez NJ; Burkhoff D; Tamez D
    ASAIO J; 2016; 62(1):15-9. PubMed ID: 26479467
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Implantable physiologic controller for left ventricular assist devices with telemetry capability.
    Asgari SS; Bonde P
    J Thorac Cardiovasc Surg; 2014 Jan; 147(1):192-202. PubMed ID: 24176267
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development of a pump flow estimator for rotary blood pumps to enhance monitoring of ventricular function.
    Granegger M; Moscato F; Casas F; Wieselthaler G; Schima H
    Artif Organs; 2012 Aug; 36(8):691-9. PubMed ID: 22882439
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Importance of Venous Return in Starling-Like Control of Rotary Ventricular Assist Devices.
    Stephens AF; Gregory SD; Salamonsen RF
    Artif Organs; 2019 Mar; 43(3):E16-E27. PubMed ID: 30094842
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Viscosity Prediction in a Physiologically Controlled Ventricular Assist Device.
    Petrou A; Kanakis M; Boes S; Pergantis P; Meboldt M; Daners MS
    IEEE Trans Biomed Eng; 2018 Oct; 65(10):2355-2364. PubMed ID: 29993524
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Viscosity-adjusted estimation of pressure head and pump flow with quasi-pulsatile modulation of rotary blood pump for a total artificial heart.
    Yurimoto T; Hara S; Isoyama T; Saito I; Ono T; Abe Y
    J Artif Organs; 2016 Sep; 19(3):219-25. PubMed ID: 27022734
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In Vivo Evaluation of Active and Passive Physiological Control Systems for Rotary Left and Right Ventricular Assist Devices.
    Gregory SD; Stevens MC; Pauls JP; Schummy E; Diab S; Thomson B; Anderson B; Tansley G; Salamonsen R; Fraser JF; Timms D
    Artif Organs; 2016 Sep; 40(9):894-903. PubMed ID: 26748566
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Noninvasive pulsatile flow estimation for an implantable rotary blood pump.
    Karantonis DM; Cloherty SL; Mason DG; Ayre PJ; Lovell NH
    Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():1018-21. PubMed ID: 18002133
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sensorless Viscosity Measurement in a Magnetically-Levitated Rotary Blood Pump.
    Hijikata W; Rao J; Abe S; Takatani S; Shinshi T
    Artif Organs; 2015 Jul; 39(7):559-68. PubMed ID: 25920684
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Physiological control of dual rotary pumps as a biventricular assist device using a master/slave approach.
    Stevens MC; Wilson S; Bradley A; Fraser J; Timms D
    Artif Organs; 2014 Sep; 38(9):766-74. PubMed ID: 24749848
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Physiological Controller for Turbodynamic Ventricular Assist Devices Based on Left Ventricular Systolic Pressure.
    Petrou A; Ochsner G; Amacher R; Pergantis P; Rebholz M; Meboldt M; Schmid Daners M
    Artif Organs; 2016 Sep; 40(9):842-55. PubMed ID: 27645395
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Non-invasive estimation of pulsatile flow and differential pressure in an implantable rotary blood pump for heart failure patients.
    AlOmari AH; Savkin AV; Karantonis DM; Lim E; Lovell NH
    Physiol Meas; 2009 Apr; 30(4):371-86. PubMed ID: 19282557
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A novel interface for hybrid mock circulations to evaluate ventricular assist devices.
    Ochsner G; Amacher R; Amstutz A; Plass A; Schmid Daners M; Tevaearai H; Vandenberghe S; Wilhelm MJ; Guzzella L
    IEEE Trans Biomed Eng; 2013 Feb; 60(2):507-16. PubMed ID: 23204266
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of an adult mock circulation for testing cardiac support devices.
    Pantalos GM; Koenig SC; Gillars KJ; Giridharan GA; Ewert DL
    ASAIO J; 2004; 50(1):37-46. PubMed ID: 14763490
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Measuring real-time blood viscosity with a ventricular assist device.
    Hijikata W; Maruyama T; Suzumori Y; Shinshi T
    Proc Inst Mech Eng H; 2019 May; 233(5):562-569. PubMed ID: 30894084
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Noninvasive pump flow estimation of a centrifugal blood pump.
    Wakisaka Y; Okuzono Y; Taenaka Y; Chikanari K; Masuzawa T; Nakatani T; Tatsumi E; Nishimura T; Takewa Y; Ohno T; Takano H
    Artif Organs; 1997 Jul; 21(7):651-4. PubMed ID: 9212933
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.