These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 28718771)

  • 1. Substitutional carbon doping of free-standing and Ru-supported BN sheets: a first-principles study.
    Berseneva N; Komsa HP; Vierimaa V; Björkman T; Fan Z; Harju A; Todorović M; Krasheninnikov AV; Nieminen RM
    J Phys Condens Matter; 2017 Oct; 29(41):415301. PubMed ID: 28718771
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Oxygen-Molecule Adsorption and Dissociation on BCN Graphene: A First-Principles Study.
    Tang S; Wu W; Liu L; Gu J
    Chemphyschem; 2017 Jan; 18(1):101-110. PubMed ID: 27685829
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Two-dimensional hexagonal boron-carbon-nitrogen atomic layers.
    Cheng L; Meng J; Pan X; Lu Y; Zhang X; Gao M; Yin Z; Wang D; Wang Y; You J; Zhang J; Xie E
    Nanoscale; 2019 May; 11(21):10454-10462. PubMed ID: 31112200
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Converting graphene oxide monolayers into boron carbonitride nanosheets by substitutional doping.
    Lin TW; Su CY; Zhang XQ; Zhang W; Lee YH; Chu CW; Lin HY; Chang MT; Chen FR; Li LJ
    Small; 2012 May; 8(9):1384-91. PubMed ID: 22378619
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Metal-free Ternary BCN Nanosheets with Synergetic Effect of Band Gap Engineering and Magnetic Properties.
    Sun C; Ma F; Cai L; Wang A; Wu Y; Zhao M; Yan W; Hao X
    Sci Rep; 2017 Jul; 7(1):6617. PubMed ID: 28747727
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electronic and effective mass modulation in 2D BCN by strain engineering.
    Liu L; Kou L; Wang Y; Lu C; Hu X
    Nanotechnology; 2020 Nov; 31(45):455702. PubMed ID: 32808598
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Density Functional Theory Study of Aspirin Adsorption on BCN Sheets and their Hydrogen Evolution Reaction Activity: a Comparative Study with Graphene and Hexagonal Boron Nitride.
    Yadav VK; Mir SH; Singh JK
    Chemphyschem; 2019 Mar; 20(5):687-694. PubMed ID: 30623536
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transition metal chalcogenides: ultrathin inorganic materials with tunable electronic properties.
    Heine T
    Acc Chem Res; 2015 Jan; 48(1):65-72. PubMed ID: 25489917
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tunable doping and band gap of graphene on functionalized hexagonal boron nitride with hydrogen and fluorine.
    Tang S; Yu J; Liu L
    Phys Chem Chem Phys; 2013 Apr; 15(14):5067-77. PubMed ID: 23450178
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electronic Properties of h-BCN-Blue Phosphorene van der Waals Heterostructures.
    Kaewmaraya T; Srepusharawoot P; Hussian T; Amornkitbamrung V
    Chemphyschem; 2018 Mar; 19(5):612-618. PubMed ID: 29210157
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A new planar BCN lateral heterostructure with outstanding strength and defect-mediated superior semiconducting to metallic properties.
    Thomas S; Asle Zaeem M
    Phys Chem Chem Phys; 2020 Oct; 22(38):22066-22077. PubMed ID: 32985621
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Graphene-like Boron-Carbon-Nitrogen Monolayers.
    Beniwal S; Hooper J; Miller DP; Costa PS; Chen G; Liu SY; Dowben PA; Sykes EC; Zurek E; Enders A
    ACS Nano; 2017 Mar; 11(3):2486-2493. PubMed ID: 28165713
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of Mono-Vacancies and Co-Vacancies of Nitrogen and Boron on the Energetics and Electronic Properties of Heterobilayer h-BN/graphene.
    Jiménez GC; Morinson-Negrete JD; Blanquicett FP; Ortega-López C; Espitia-Rico MJ
    Materials (Basel); 2022 Sep; 15(18):. PubMed ID: 36143681
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electronic Structure and Surface Chemistry of Hexagonal Boron Nitride on HOPG and Nickel Substrates.
    Småbråten DR; Nylund IE; Marshall K; Walker J; Benelmekki M; Einarsrud MA; Kioseoglou J; Selbach SM
    ACS Omega; 2023 Jul; 8(28):24813-24830. PubMed ID: 37483195
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The influence of the stacking orientation of C and BN stripes in the structure, energetics, and electronic properties of BC2N nanotubes.
    Machado M; Kar T; Piquini P
    Nanotechnology; 2011 May; 22(20):205706. PubMed ID: 21444960
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Thermal conductivity of a h-BCN monolayer.
    Zhang YY; Pei QX; Liu HY; Wei N
    Phys Chem Chem Phys; 2017 Oct; 19(40):27326-27331. PubMed ID: 28971201
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Isoelectronic doping of graphdiyne with boron and nitrogen: stable configurations and band gap modification.
    Bu H; Zhao M; Zhang H; Wang X; Xi Y; Wang Z
    J Phys Chem A; 2012 Apr; 116(15):3934-9. PubMed ID: 22435915
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rules of boron-nitrogen doping in defect graphene sheets: a first-principles investigation of band-gap tuning and oxygen reduction reaction catalysis capabilities.
    Sen D; Thapa R; Chattopadhyay KK
    Chemphyschem; 2014 Aug; 15(12):2542-9. PubMed ID: 24910355
    [TBL] [Abstract][Full Text] [Related]  

  • 19. New 2D Structural Materials: Carbon-Gallium Nitride (CC-GaN) and Boron-Gallium Nitride (BN-GaN) Heterostructures-Materials Design Through Density Functional Theory.
    Elloh VW; Yaya A; Gebreyesus G; Dua P; Mishra AK
    ACS Omega; 2019 Jan; 4(1):1722-1728. PubMed ID: 31459429
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Theoretical Investigation of the BCN Monolayer and Their Derivatives for Metal-free CO
    Wang J; Luo X
    ACS Omega; 2024 Jan; 9(3):3772-3780. PubMed ID: 38284013
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.