These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
140 related articles for article (PubMed ID: 28718945)
1. Efficient PAW-based bond strength analysis for understanding the In/Si(111)(8 × 2) - (4 × 1) phase transition. Lücke A; Gerstmann U; Kühne TD; Schmidt WG J Comput Chem; 2017 Oct; 38(26):2276-2282. PubMed ID: 28718945 [TBL] [Abstract][Full Text] [Related]
2. LOBSTER: Local orbital projections, atomic charges, and chemical-bonding analysis from projector-augmented-wave-based density-functional theory. Nelson R; Ertural C; George J; Deringer VL; Hautier G; Dronskowski R J Comput Chem; 2020 Aug; 41(21):1931-1940. PubMed ID: 32531113 [TBL] [Abstract][Full Text] [Related]
3. Crystal orbital Hamilton population (COHP) analysis as projected from plane-wave basis sets. Deringer VL; Tchougréeff AL; Dronskowski R J Phys Chem A; 2011 Jun; 115(21):5461-6. PubMed ID: 21548594 [TBL] [Abstract][Full Text] [Related]
4. Analytic projection from plane-wave and PAW wavefunctions and application to chemical-bonding analysis in solids. Maintz S; Deringer VL; Tchougréeff AL; Dronskowski R J Comput Chem; 2013 Nov; 34(29):2557-67. PubMed ID: 24022911 [TBL] [Abstract][Full Text] [Related]
5. LOBSTER: A tool to extract chemical bonding from plane-wave based DFT. Maintz S; Deringer VL; Tchougréeff AL; Dronskowski R J Comput Chem; 2016 Apr; 37(11):1030-5. PubMed ID: 26914535 [TBL] [Abstract][Full Text] [Related]
6. Ba11Cd8Bi14: bismuth zigzag chains in a ternary alkaline-earth transition-metal Zintl phase. Xia SQ; Bobev S Inorg Chem; 2006 Sep; 45(18):7126-32. PubMed ID: 16933913 [TBL] [Abstract][Full Text] [Related]
7. Projector Augmented Wave Method with Gauss-Type Atomic Orbital Basis: Implementation of the Generalized Gradient Approximation and Mesh Grid Quadrature. Xiong XG; Sugiura A; Yanai T J Chem Theory Comput; 2020 Aug; 16(8):4883-4898. PubMed ID: 32633511 [TBL] [Abstract][Full Text] [Related]
8. Correlations between Density-Based Bond Orders and Orbital-Based Bond Energies for Chemical Bonding Analysis. Rohling RY; Tranca IC; Hensen EJM; Pidko EA J Phys Chem C Nanomater Interfaces; 2019 Feb; 123(5):2843-2854. PubMed ID: 30842801 [TBL] [Abstract][Full Text] [Related]
9. Implementation of density functional embedding theory within the projector-augmented-wave method and applications to semiconductor defect states. Yu K; Libisch F; Carter EA J Chem Phys; 2015 Sep; 143(10):102806. PubMed ID: 26373999 [TBL] [Abstract][Full Text] [Related]
10. First-principles study of magnetic ordering of an Al infinite single-row atomic wire. Ota T; Hirose K; Ono T J Phys Condens Matter; 2009 Feb; 21(6):064240. PubMed ID: 21715942 [TBL] [Abstract][Full Text] [Related]
11. Projector Augmented Wave Method Incorporated into Gauss-Type Atomic Orbital Based Density Functional Theory. Xiong XG; Yanai T J Chem Theory Comput; 2017 Jul; 13(7):3236-3249. PubMed ID: 28531346 [TBL] [Abstract][Full Text] [Related]
12. How molecular is the chemisorptive bond? van Santen RA; Tranca I Phys Chem Chem Phys; 2016 Aug; 18(31):20868-94. PubMed ID: 27357949 [TBL] [Abstract][Full Text] [Related]
13. Contrasts in structural and bonding representations among polar intermetallic compounds. Strongly differentiated Hamilton populations for three related condensed cluster halides of the rare-earth elements. Gupta S; Meyer G; Corbett JD Inorg Chem; 2010 Nov; 49(21):9949-57. PubMed ID: 20886870 [TBL] [Abstract][Full Text] [Related]
14. Linear-scaling density functional theory using the projector augmented wave method. Hine ND J Phys Condens Matter; 2017 Jan; 29(2):024001. PubMed ID: 27841986 [TBL] [Abstract][Full Text] [Related]
15. Periodic projector augmented wave density functional calculations on the hexachlorobenzene crystal and comparison with the experimental multipolar charge density model. Aubert E; Lebègue S; Marsman M; Bui TT; Jelsch C; Dahaoui S; Espinosa E; Angyán JG J Phys Chem A; 2011 Dec; 115(50):14484-94. PubMed ID: 22040091 [TBL] [Abstract][Full Text] [Related]
16. First-Principles Study of Divalent 3d Transition-Metal Carbodiimides. Chen K; Dronskowski R J Phys Chem A; 2019 Oct; 123(43):9328-9335. PubMed ID: 31584276 [TBL] [Abstract][Full Text] [Related]
17. Crystal field coefficients for yttrium analogues of rare-earth/transition-metal magnets using density-functional theory in the projector-augmented wave formalism. Patrick CE; Staunton JB J Phys Condens Matter; 2019 Jul; 31(30):305901. PubMed ID: 30978708 [TBL] [Abstract][Full Text] [Related]
18. Entropy explains metal-insulator transition of the Si(111)-In nanowire array. Wippermann S; Schmidt WG Phys Rev Lett; 2010 Sep; 105(12):126102. PubMed ID: 20867660 [TBL] [Abstract][Full Text] [Related]
19. New Bonding Model of Radical Adsorbate on Lattice Oxygen of Perovskites. Fung V; Wu Z; Jiang DE J Phys Chem Lett; 2018 Nov; 9(21):6321-6325. PubMed ID: 30336033 [TBL] [Abstract][Full Text] [Related]
20. First-Principles Chemical Bonding Study of Manganese Carbodiimide, MnNCN, As Compared to Manganese Oxide, MnO. Nelson R; Konze PM; Dronskowski R J Phys Chem A; 2017 Oct; 121(40):7778-7786. PubMed ID: 28933545 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]