BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 28719002)

  • 1. EyeSLAM: Real-time simultaneous localization and mapping of retinal vessels during intraocular microsurgery.
    Braun D; Yang S; Martel JN; Riviere CN; Becker BC
    Int J Med Robot; 2018 Feb; 14(1):. PubMed ID: 28719002
    [TBL] [Abstract][Full Text] [Related]  

  • 2. EyeSAM: graph-based localization and mapping of retinal vasculature during intraocular microsurgery.
    Mukherjee S; Kaess M; Martel JN; Riviere CN
    Int J Comput Assist Radiol Surg; 2019 May; 14(5):819-828. PubMed ID: 30790173
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Handheld-automated microsurgical instrumentation for intraocular laser surgery.
    Yang S; Lobes LA; Martel JN; Riviere CN
    Lasers Surg Med; 2015 Oct; 47(8):658-68. PubMed ID: 26287813
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Semiautomated intraocular laser surgery using handheld instruments.
    Becker BC; MacLachlan RA; Lobes LA; Riviere CN
    Lasers Surg Med; 2010 Mar; 42(3):264-73. PubMed ID: 20333740
    [TBL] [Abstract][Full Text] [Related]  

  • 5. FBG-based sensorized light pipe for robotic intraocular illumination facilitates bimanual retinal microsurgery.
    Horise Y; He X; Gehlbach P; Taylor R; Iordachita I
    Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():13-6. PubMed ID: 26736189
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Feasibility study on robot-assisted retinal vascular bypass surgery in an ex vivo porcine model.
    Chen YQ; Tao JW; Li L; Mao JB; Zhu CT; Lao JM; Yang Y; Shen LJ
    Acta Ophthalmol; 2017 Sep; 95(6):e462-e467. PubMed ID: 28597519
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cooperative robot assistant for retinal microsurgery.
    Fleming I; Balicki M; Koo J; Iordachita I; Mitchell B; Handa J; Hager G; Taylor R
    Med Image Comput Comput Assist Interv; 2008; 11(Pt 2):543-50. PubMed ID: 18982647
    [TBL] [Abstract][Full Text] [Related]  

  • 8. 'The Microhand': a new concept of micro-forceps for ocular robotic surgery.
    Hubschman JP; Bourges JL; Choi W; Mozayan A; Tsirbas A; Kim CJ; Schwartz SD
    Eye (Lond); 2010 Feb; 24(2):364-7. PubMed ID: 19300461
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Real-time algorithm for retinal tracking.
    Markov MS; Rylander HG; Welch AJ
    IEEE Trans Biomed Eng; 1993 Dec; 40(12):1269-81. PubMed ID: 8125503
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cooperative robot assistant for vitreoretinal microsurgery: development of the RVRMS and feasibility studies in an animal model.
    Chen YQ; Tao JW; Su LY; Li L; Zhao SX; Yang Y; Shen LJ
    Graefes Arch Clin Exp Ophthalmol; 2017 Jun; 255(6):1167-1171. PubMed ID: 28389702
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Real-Time Retinal Vessel Mapping and Localization for Intraocular Surgery.
    Becker BC; Riviere CN
    IEEE Int Conf Robot Autom; 2013; ():5360-5365. PubMed ID: 24488000
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Three-dimensional Reconstruction of Retinal Vessels Based on Binocular Vision].
    Zhou J; Han S; Zheng Y; Wu Z; Liang Q; Yang Y
    Zhongguo Yi Liao Qi Xie Za Zhi; 2020 Jan; 44(1):13-19. PubMed ID: 32343059
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Toward robot-assisted vascular microsurgery in the retina.
    Jensen PS; Grace KW; Attariwala R; Colgate JE; Glucksberg MR
    Graefes Arch Clin Exp Ophthalmol; 1997 Nov; 235(11):696-701. PubMed ID: 9407227
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Adaptive multispectral illumination for retinal microsurgery.
    Sznitman R; Rother D; Handa J; Gehlbach P; Hager GD; Taylor R
    Med Image Comput Comput Assist Interv; 2010; 13(Pt 3):465-72. PubMed ID: 20879433
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Real-time localization of articulated surgical instruments in retinal microsurgery.
    Rieke N; Tan DJ; Amat di San Filippo C; Tombari F; Alsheakhali M; Belagiannis V; Eslami A; Navab N
    Med Image Anal; 2016 Dec; 34():82-100. PubMed ID: 27237604
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Real-time multimodal retinal image registration for a computer-assisted laser photocoagulation system.
    Broehan AM; Rudolph T; Amstutz CA; Kowal JH
    IEEE Trans Biomed Eng; 2011 Oct; 58(10):2816-24. PubMed ID: 21689999
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Unified detection and tracking in retinal microsurgery.
    Sznitman R; Basu A; Richa R; Handa J; Gehlbach P; Taylor RH; Jedynak B; Hager GD
    Med Image Comput Comput Assist Interv; 2011; 14(Pt 1):1-8. PubMed ID: 22003593
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The chick chorioallantoic membrane as a model tissue for surgical retinal research and simulation.
    Leng T; Miller JM; Bilbao KV; Palanker DV; Huie P; Blumenkranz MS
    Retina; 2004 Jun; 24(3):427-34. PubMed ID: 15187666
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Unified detection and tracking of instruments during retinal microsurgery.
    Sznitman R; Richa R; Taylor RH; Jedynak B; Hager GD
    IEEE Trans Pattern Anal Mach Intell; 2013 May; 35(5):1263-73. PubMed ID: 23520263
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Retinal vessel cannulation with an image-guided handheld robot.
    Becker BC; Voros S; Lobes LA; Handa JT; Hager GD; Riviere CN
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():5420-3. PubMed ID: 21096274
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.