These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 28719177)

  • 21. Radiosynthesis and evaluation of [11C]-(+)-4-propyl-3,4,4a,5,6,10b-hexahydro-2H-naphtho[1,2-b][1,4]oxazin-9-ol as a potential radiotracer for in vivo imaging of the dopamine D2 high-affinity state with positron emission tomography.
    Wilson AA; McCormick P; Kapur S; Willeit M; Garcia A; Hussey D; Houle S; Seeman P; Ginovart N
    J Med Chem; 2005 Jun; 48(12):4153-60. PubMed ID: 15943487
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Imaging in Parkinson's disease: the role of monoamines in behavior.
    Brooks DJ; Piccini P
    Biol Psychiatry; 2006 May; 59(10):908-18. PubMed ID: 16581032
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Imaging dopamine neurotransmission in live human brain.
    Badgaiyan RD
    Prog Brain Res; 2014; 211():165-82. PubMed ID: 24968780
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Radiosynthesis, ex vivo and in vivo evaluation of [11C]preclamol as a partial dopamine D2 agonist radioligand for positron emission tomography.
    Vasdev N; Natesan S; Galineau L; Garcia A; Stableford WT; McCormick P; Seeman P; Houle S; Wilson AA
    Synapse; 2006 Sep; 60(4):314-8. PubMed ID: 16786538
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Applications of positron emission tomography in psychiatry.
    Parsey RV; Mann JJ
    Semin Nucl Med; 2003 Apr; 33(2):129-35. PubMed ID: 12756645
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The role of central dopamine and serotonin in human obesity: lessons learned from molecular neuroimaging studies.
    van Galen KA; Ter Horst KW; Booij J; la Fleur SE; Serlie MJ
    Metabolism; 2018 Aug; 85():325-339. PubMed ID: 28970033
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Imaging the D3 dopamine receptor across behavioral and drug addictions: Positron emission tomography studies with [(11)C]-(+)-PHNO.
    Boileau I; Nakajima S; Payer D
    Eur Neuropsychopharmacol; 2015 Sep; 25(9):1410-20. PubMed ID: 26141509
    [TBL] [Abstract][Full Text] [Related]  

  • 28. New developments of dopaminergic imaging in Parkinson's disease.
    Varrone A; Halldin C
    Q J Nucl Med Mol Imaging; 2012 Feb; 56(1):68-82. PubMed ID: 22460161
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Subtype-selective dopamine receptor radioligands for PET imaging: current status and recent developments.
    Banerjee A; Prante O
    Curr Med Chem; 2012; 19(23):3957-66. PubMed ID: 22780960
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Longitudinal PET imaging in a patient with schizophrenia did not show marked changes in dopaminergic function with relapse of psychosis.
    Valli I; Howes O; Tyrer P; McGuire P; Grasby PM
    Am J Psychiatry; 2008 Dec; 165(12):1613-4. PubMed ID: 19047337
    [No Abstract]   [Full Text] [Related]  

  • 31. Pathway-Specific Dopamine Abnormalities in Schizophrenia.
    Weinstein JJ; Chohan MO; Slifstein M; Kegeles LS; Moore H; Abi-Dargham A
    Biol Psychiatry; 2017 Jan; 81(1):31-42. PubMed ID: 27206569
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Radioligands for the dopamine receptor subtypes.
    Prante O; Maschauer S; Banerjee A
    J Labelled Comp Radiopharm; 2013; 56(3-4):130-48. PubMed ID: 24285319
    [TBL] [Abstract][Full Text] [Related]  

  • 33. [Neuroimaging in schizophrenia].
    Lanzenberger R; Kasper S
    Fortschr Neurol Psychiatr; 2005 Nov; 73 Suppl 1():S51-9. PubMed ID: 16270245
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Positron emission tomography neuroimaging for a better understanding of the biology of ADHD.
    Zimmer L
    Neuropharmacology; 2009 Dec; 57(7-8):601-7. PubMed ID: 19682469
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Synthesis, biological evaluation and radiolabelling by 18F-fluoroarylation of a dopamine D3-selective ligand as prospective imaging probe for PET.
    Höfling SB; Maschauer S; Hübner H; Gmeiner P; Wester HJ; Prante O; Heinrich MR
    Bioorg Med Chem Lett; 2010 Dec; 20(23):6933-7. PubMed ID: 21030255
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Mapping of central dopamine synthesis in man, using positron emission tomography with L-[beta-11C]DOPA.
    Ito H; Shidahara M; Takano H; Takahashi H; Nozaki S; Suhara T
    Ann Nucl Med; 2007 Aug; 21(6):355-60. PubMed ID: 17705016
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Evaluation of 6-11C-Methyl-m-Tyrosine as a PET Probe for Presynaptic Dopaminergic Activity: A Comparison PET Study with β-11C-l-DOPA and 18F-FDOPA in Parkinson Disease Monkeys.
    Kanazawa M; Ohba H; Harada N; Kakiuchi T; Muramatsu S; Tsukada H
    J Nucl Med; 2016 Feb; 57(2):303-8. PubMed ID: 26564319
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Sensitivity of kinetic macro parameters to changes in dopamine synthesis, storage, and metabolism: a simulation study for [¹⁸F]FDOPA PET by a model with detailed dopamine pathway.
    Matsubara K; Watabe H; Kumakura Y; Hayashi T; Endres CJ; Minato K; Iida H
    Synapse; 2011 Aug; 65(8):751-62. PubMed ID: 21190220
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Quantitative approaches to dopaminergic brain imaging.
    Tatsch K; Poepperl G
    Q J Nucl Med Mol Imaging; 2012 Feb; 56(1):27-38. PubMed ID: 22460158
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Update on PET imaging biomarkers in the diagnosis of neuropsychiatric disorders.
    Hellwig S; Domschke K
    Curr Opin Neurol; 2019 Aug; 32(4):539-547. PubMed ID: 31083013
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.