BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

282 related articles for article (PubMed ID: 28719187)

  • 1. Exploring the Role of Habitat on the Wettability of Cicada Wings.
    Oh J; Dana CE; Hong S; Román JK; Jo KD; Hong JW; Nguyen J; Cropek DM; Alleyne M; Miljkovic N
    ACS Appl Mater Interfaces; 2017 Aug; 9(32):27173-27184. PubMed ID: 28719187
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cicada Wing Surface Topography: An Investigation into the Bactericidal Properties of Nanostructural Features.
    Kelleher SM; Habimana O; Lawler J; O' Reilly B; Daniels S; Casey E; Cowley A
    ACS Appl Mater Interfaces; 2016 Jun; 8(24):14966-74. PubMed ID: 26551558
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bioinspired surfaces with special wettability.
    Sun T; Feng L; Gao X; Jiang L
    Acc Chem Res; 2005 Aug; 38(8):644-52. PubMed ID: 16104687
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rapid fabrication of bio-inspired nanostructure with hydrophobicity and antireflectivity on polystyrene surface replicating from cicada wings.
    Xie H; Huang HX; Peng YJ
    Nanoscale; 2017 Aug; 9(33):11951-11958. PubMed ID: 28792045
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multi-biofunctional properties of three species of cicada wings and biomimetic fabrication of nanopatterned titanium pillars.
    Shahali H; Hasan J; Mathews A; Wang H; Yan C; Tesfamichael T; Yarlagadda PKDV
    J Mater Chem B; 2019 Feb; 7(8):1300-1310. PubMed ID: 32255169
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Wetting properties on nanostructured surfaces of cicada wings.
    Sun M; Watson GS; Zheng Y; Watson JA; Liang A
    J Exp Biol; 2009 Oct; 212(19):3148-55. PubMed ID: 19749108
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spatially resolved chemical analysis of cicada wings using laser-ablation electrospray ionization (LAESI) imaging mass spectrometry (IMS).
    Román JK; Walsh CM; Oh J; Dana CE; Hong S; Jo KD; Alleyne M; Miljkovic N; Cropek DM
    Anal Bioanal Chem; 2018 Mar; 410(7):1911-1921. PubMed ID: 29380018
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Self-cleaning of superhydrophobic surfaces by self-propelled jumping condensate.
    Wisdom KM; Watson JA; Qu X; Liu F; Watson GS; Chen CH
    Proc Natl Acad Sci U S A; 2013 May; 110(20):7992-7. PubMed ID: 23630277
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Selective bactericidal activity of nanopatterned superhydrophobic cicada Psaltoda claripennis wing surfaces.
    Hasan J; Webb HK; Truong VK; Pogodin S; Baulin VA; Watson GS; Watson JA; Crawford RJ; Ivanova EP
    Appl Microbiol Biotechnol; 2013 Oct; 97(20):9257-62. PubMed ID: 23250225
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spatial variations and temporal metastability of the self-cleaning and superhydrophobic properties of damselfly wings.
    Hasan J; Webb HK; Truong VK; Watson GS; Watson JA; Tobin MJ; Gervinskas G; Juodkazis S; Wang JY; Crawford RJ; Ivanova EP
    Langmuir; 2012 Dec; 28(50):17404-9. PubMed ID: 23181510
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High-spatial-resolution mapping of superhydrophobic cicada wing surface chemistry using infrared microspectroscopy and infrared imaging at two synchrotron beamlines.
    Tobin MJ; Puskar L; Hasan J; Webb HK; Hirschmugl CJ; Nasse MJ; Gervinskas G; Juodkazis S; Watson GS; Watson JA; Crawford RJ; Ivanova EP
    J Synchrotron Radiat; 2013 May; 20(Pt 3):482-9. PubMed ID: 23592628
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A study of the anti-reflection efficiency of natural nano-arrays of varying sizes.
    Sun M; Liang A; Zheng Y; Watson GS; Watson JA
    Bioinspir Biomim; 2011 Jun; 6(2):026003. PubMed ID: 21464519
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Influence of cuticle nanostructuring on the wetting behaviour/states on cicada wings.
    Sun M; Liang A; Watson GS; Watson JA; Zheng Y; Ju J; Jiang L
    PLoS One; 2012; 7(4):e35056. PubMed ID: 22536351
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Flexible Self-Cleaning Broadband Antireflective Film Inspired by the Transparent Cicada Wings.
    Han Z; Wang Z; Li B; Feng X; Jiao Z; Zhang J; Zhao J; Niu S; Ren L
    ACS Appl Mater Interfaces; 2019 May; 11(18):17019-17027. PubMed ID: 30993966
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cicada-Wing-Inspired Self-Cleaning Antireflection Coatings on Polymer Substrates.
    Chen YC; Huang ZS; Yang H
    ACS Appl Mater Interfaces; 2015 Nov; 7(45):25495-505. PubMed ID: 26505645
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Combination of active behaviors and passive structures contributes to the cleanliness of housefly wing surfaces: A new insight for the design of cleaning materials.
    Wan Q; Li H; Zhang S; Wang C; Su S; Long S; Pan B
    Colloids Surf B Biointerfaces; 2019 Aug; 180():473-480. PubMed ID: 31102851
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Artificial insect wings with biomimetic wing morphology and mechanical properties.
    Liu Z; Yan X; Qi M; Zhu Y; Huang D; Zhang X; Lin L
    Bioinspir Biomim; 2017 Sep; 12(5):056007. PubMed ID: 28696330
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Replication of cicada wing's nano-patterns by hot embossing and UV nanoimprinting.
    Hong SH; Hwang J; Lee H
    Nanotechnology; 2009 Sep; 20(38):385303. PubMed ID: 19713589
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biophysical model of bacterial cell interactions with nanopatterned cicada wing surfaces.
    Pogodin S; Hasan J; Baulin VA; Webb HK; Truong VK; Phong Nguyen TH; Boshkovikj V; Fluke CJ; Watson GS; Watson JA; Crawford RJ; Ivanova EP
    Biophys J; 2013 Feb; 104(4):835-40. PubMed ID: 23442962
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Replica molding of cicada wings: The role of water at point of synthesis on nanostructure feature size.
    Flynn SP; Daniels S; Rodriguez BJ; Kelleher SM
    Biointerphases; 2020 Dec; 15(6):061017. PubMed ID: 33356334
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.