BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

216 related articles for article (PubMed ID: 28719589)

  • 1. An excited state underlies gene regulation of a transcriptional riboswitch.
    Zhao B; Guffy SL; Williams B; Zhang Q
    Nat Chem Biol; 2017 Sep; 13(9):968-974. PubMed ID: 28719589
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Base-Pair Opening Dynamics Study of Fluoride Riboswitch in the
    Lee J; Sung SE; Lee J; Kang JY; Lee JH; Choi BS
    Int J Mol Sci; 2021 Mar; 22(6):. PubMed ID: 33810132
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Probing excited conformational states of nucleic acids by nitrogen CEST NMR spectroscopy.
    Zhao B; Baisden JT; Zhang Q
    J Magn Reson; 2020 Jan; 310():106642. PubMed ID: 31785475
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pausing guides RNA folding to populate transiently stable RNA structures for riboswitch-based transcription regulation.
    Steinert H; Sochor F; Wacker A; Buck J; Helmling C; Hiller F; Keyhani S; Noeske J; Grimm S; Rudolph MM; Keller H; Mooney RA; Landick R; Suess B; Fürtig B; Wöhnert J; Schwalbe H
    Elife; 2017 May; 6():. PubMed ID: 28541183
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The dynamic nature of RNA as key to understanding riboswitch mechanisms.
    Haller A; Soulière MF; Micura R
    Acc Chem Res; 2011 Dec; 44(12):1339-48. PubMed ID: 21678902
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An anionic ligand snap-locks a long-range interaction in a magnesium-folded riboswitch.
    Yadav R; Widom JR; Chauvier A; Walter NG
    Nat Commun; 2022 Jan; 13(1):207. PubMed ID: 35017489
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interplay of 'induced fit' and preorganization in the ligand induced folding of the aptamer domain of the guanine binding riboswitch.
    Noeske J; Buck J; Fürtig B; Nasiri HR; Schwalbe H; Wöhnert J
    Nucleic Acids Res; 2007; 35(2):572-83. PubMed ID: 17175531
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Measuring Residual Dipolar Couplings in Excited Conformational States of Nucleic Acids by CEST NMR Spectroscopy.
    Zhao B; Zhang Q
    J Am Chem Soc; 2015 Oct; 137(42):13480-3. PubMed ID: 26462068
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Magnesium controls aptamer-expression platform switching in the SAM-I riboswitch.
    Roy S; Hennelly SP; Lammert H; Onuchic JN; Sanbonmatsu KY
    Nucleic Acids Res; 2019 Apr; 47(6):3158-3170. PubMed ID: 30605518
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterizing slow chemical exchange in nucleic acids by carbon CEST and low spin-lock field R(1ρ) NMR spectroscopy.
    Zhao B; Hansen AL; Zhang Q
    J Am Chem Soc; 2014 Jan; 136(1):20-3. PubMed ID: 24299272
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Gene regulation by a glycine riboswitch singlet uses a finely tuned energetic landscape for helical switching.
    Torgerson CD; Hiller DA; Stav S; Strobel SA
    RNA; 2018 Dec; 24(12):1813-1827. PubMed ID: 30237163
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ligand-modulated folding of the full-length adenine riboswitch probed by NMR and single-molecule FRET spectroscopy.
    Warhaut S; Mertinkus KR; Höllthaler P; Fürtig B; Heilemann M; Hengesbach M; Schwalbe H
    Nucleic Acids Res; 2017 May; 45(9):5512-5522. PubMed ID: 28204648
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Single-molecule analysis reveals multi-state folding of a guanine riboswitch.
    Chandra V; Hannan Z; Xu H; Mandal M
    Nat Chem Biol; 2017 Feb; 13(2):194-201. PubMed ID: 27941758
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structure and dynamics of the deoxyguanosine-sensing riboswitch studied by NMR-spectroscopy.
    Wacker A; Buck J; Mathieu D; Richter C; Wöhnert J; Schwalbe H
    Nucleic Acids Res; 2011 Aug; 39(15):6802-12. PubMed ID: 21576236
    [TBL] [Abstract][Full Text] [Related]  

  • 15. NMR Structural Profiling of Transcriptional Intermediates Reveals Riboswitch Regulation by Metastable RNA Conformations.
    Helmling C; Wacker A; Wolfinger MT; Hofacker IL; Hengesbach M; Fürtig B; Schwalbe H
    J Am Chem Soc; 2017 Feb; 139(7):2647-2656. PubMed ID: 28134517
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tertiary Interactions in the Unbound Guanine-Sensing Riboswitch Focus Functional Conformational Variability on the Binding Site.
    Hanke CA; Gohlke H
    J Chem Inf Model; 2017 Nov; 57(11):2822-2832. PubMed ID: 29019403
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ligand binding to 2΄-deoxyguanosine sensing riboswitch in metabolic context.
    Kim YB; Wacker A; Laer KV; Rogov VV; Suess B; Schwalbe H
    Nucleic Acids Res; 2017 May; 45(9):5375-5386. PubMed ID: 28115631
    [TBL] [Abstract][Full Text] [Related]  

  • 18. De novo design of a synthetic riboswitch that regulates transcription termination.
    Wachsmuth M; Findeiß S; Weissheimer N; Stadler PF; Mörl M
    Nucleic Acids Res; 2013 Feb; 41(4):2541-51. PubMed ID: 23275562
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fluoride ion encapsulation by Mg2+ ions and phosphates in a fluoride riboswitch.
    Ren A; Rajashankar KR; Patel DJ
    Nature; 2012 May; 486(7401):85-9. PubMed ID: 22678284
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Highly Coupled Network of Tertiary Interactions in the SAM-I Riboswitch and Their Role in Regulatory Tuning.
    Wostenberg C; Ceres P; Polaski JT; Batey RT
    J Mol Biol; 2015 Nov; 427(22):3473-3490. PubMed ID: 26343759
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.