BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 28719625)

  • 1. Differences of immune disorders between Alzheimer's disease and breast cancer based on transcriptional regulation.
    Kong W; Mou X; Deng J; Di B; Zhong R; Wang S; Yang Y; Zeng W
    PLoS One; 2017; 12(7):e0180337. PubMed ID: 28719625
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dynamic regulatory network reconstruction for Alzheimer's disease based on matrix decomposition techniques.
    Kong W; Mou X; Zhi X; Zhang X; Yang Y
    Comput Math Methods Med; 2014; 2014():891761. PubMed ID: 25024739
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Exploring matrix factorization techniques for significant genes identification of Alzheimer's disease microarray gene expression data.
    Kong W; Mou X; Hu X
    BMC Bioinformatics; 2011; 12 Suppl 5(Suppl 5):S7. PubMed ID: 21989140
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Computational studies on Alzheimer's disease associated pathways and regulatory patterns using microarray gene expression and network data: revealed association with aging and other diseases.
    Panigrahi PP; Singh TR
    J Theor Biol; 2013 Oct; 334():109-21. PubMed ID: 23811083
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Construction of Transcriptional Regulatory Network of Alzheimer's Disease Based on PANDA Algorithm.
    Ding J; Kong W; Mou X; Wang S
    Interdiscip Sci; 2019 Jun; 11(2):226-236. PubMed ID: 29675796
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Exploring the changes of brain immune microenvironment in Alzheimer's disease based on PANDA algorithm combined with blood brain barrier injury-related genes.
    Lu S; Kong W; Wang S
    Biochem Biophys Res Commun; 2021 Jun; 557():159-165. PubMed ID: 33865224
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Brain in situ hybridization maps as a source for reverse-engineering transcriptional regulatory networks: Alzheimer's disease insights.
    Acquaah-Mensah GK; Taylor RC
    Gene; 2016 Jul; 586(1):77-86. PubMed ID: 27050105
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Incipient Alzheimer's disease: microarray correlation analyses reveal major transcriptional and tumor suppressor responses.
    Blalock EM; Geddes JW; Chen KC; Porter NM; Markesbery WR; Landfield PW
    Proc Natl Acad Sci U S A; 2004 Feb; 101(7):2173-8. PubMed ID: 14769913
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reconstruction of temporal activity of microRNAs from gene expression data in breast cancer cell line.
    Jayavelu ND; Bar N
    BMC Genomics; 2015 Dec; 16():1077. PubMed ID: 26763900
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A regulatory role for the insulin- and BDNF-linked RORA in the hippocampus: implications for Alzheimer's disease.
    Acquaah-Mensah GK; Agu N; Khan T; Gardner A
    J Alzheimers Dis; 2015; 44(3):827-38. PubMed ID: 25362032
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Analytical Strategy to Prioritize Alzheimer's Disease Candidate Genes in Gene Regulatory Networks Using Public Expression Data.
    Kawalia SB; Raschka T; Naz M; de Matos Simoes R; Senger P; Hofmann-Apitius M
    J Alzheimers Dis; 2017; 59(4):1237-1254. PubMed ID: 28800327
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transcriptome network component analysis with limited microarray data.
    Galbraith SJ; Tran LM; Liao JC
    Bioinformatics; 2006 Aug; 22(15):1886-94. PubMed ID: 16766556
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Alzheimer's disease master regulators analysis: search for potential molecular targets and drug repositioning candidates.
    Vargas DM; De Bastiani MA; Zimmer ER; Klamt F
    Alzheimers Res Ther; 2018 Jun; 10(1):59. PubMed ID: 29935546
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Meta-Analysis of Transcriptome Data Related to Hippocampus Biopsies and iPSC-Derived Neuronal Cells from Alzheimer's Disease Patients Reveals an Association with FOXA1 and FOXA2 Gene Regulatory Networks.
    Wruck W; Schröter F; Adjaye J
    J Alzheimers Dis; 2016; 50(4):1065-82. PubMed ID: 26890743
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Gene expression profiling of 12633 genes in Alzheimer hippocampal CA1: transcription and neurotrophic factor down-regulation and up-regulation of apoptotic and pro-inflammatory signaling.
    Colangelo V; Schurr J; Ball MJ; Pelaez RP; Bazan NG; Lukiw WJ
    J Neurosci Res; 2002 Nov; 70(3):462-73. PubMed ID: 12391607
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Gene expression analysis reveals the dysregulation of immune and metabolic pathways in Alzheimer's disease.
    Chen J; Xie C; Zhao Y; Li Z; Xu P; Yao L
    Oncotarget; 2016 Nov; 7(45):72469-72474. PubMed ID: 27732949
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Inverse Relationship Between Alzheimer's Disease and Cancer: How Immune Checkpoints Might Explain the Mechanisms Underlying Age-Related Diseases.
    Rogers NK; Romero C; SanMartín CD; Ponce DP; Salech F; López MN; Gleisner A; Tempio F; Behrens MI
    J Alzheimers Dis; 2020; 73(2):443-454. PubMed ID: 31839609
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Immunological and immunogenetic markers in sporadic Alzheimer's disease.
    Lio D; Scola L; Romano GC; Candore G; Caruso C
    Aging Clin Exp Res; 2006 Apr; 18(2):163-6. PubMed ID: 16702788
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Use of cDNA microarray in the search for molecular markers involved in the onset of Alzheimer's disease dementia.
    Pasinetti GM
    J Neurosci Res; 2001 Sep; 65(6):471-6. PubMed ID: 11550214
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Elucidating the altered transcriptional programs in breast cancer using independent component analysis.
    Teschendorff AE; Journée M; Absil PA; Sepulchre R; Caldas C
    PLoS Comput Biol; 2007 Aug; 3(8):e161. PubMed ID: 17708679
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.