BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

29 related articles for article (PubMed ID: 28719843)

  • 1. Performance Projection of Vacuum Gate Dielectric Doping-Free Carbon Nanoribbon/Nanotube Field-Effect Transistors for Radiation-Immune Nanoelectronics.
    Tamersit K; Kouzou A; Rodriguez J; Abdelrahem M
    Nanomaterials (Basel); 2024 Jun; 14(11):. PubMed ID: 38869587
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Numerical investigation on the convergence of self-consistent Schrödinger-Poisson equations in semiconductor device transport simulation.
    Zhu J; Cao J; Song C; Li B; Han Z
    Nanotechnology; 2024 May; 35(31):. PubMed ID: 38764182
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Machine learning and DFT-based combined framework for predicting transmission spectra of quantum-confined bio-molecular nanotube.
    Roy DD; Roy P; De D
    J Mol Model; 2023 Oct; 29(11):338. PubMed ID: 37831201
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electrically Doped Nanoscale Devices Using First-Principle Approach: A Comprehensive Survey.
    Dey D; De D; Ahmadian A; Ghaemi F; Senu N
    Nanoscale Res Lett; 2021 Jan; 16(1):20. PubMed ID: 33512575
    [TBL] [Abstract][Full Text] [Related]  

  • 5. First principle approach towards logic design using hydrogen-doped single-strand DNA.
    Roy P; Dey D; De D
    IET Nanobiotechnol; 2019 Feb; 13(1):77-83. PubMed ID: 30964042
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Properties of nanobelts and nanotubes measured by in situ TEM.
    Wang ZL
    Microsc Microanal; 2004 Feb; 10(1):158-66. PubMed ID: 15306081
    [TBL] [Abstract][Full Text] [Related]  

  • 7. First principle study of the self-switching characteristics of the guanine based single optical molecular switch using carbon nanotube electrodes.
    Dey D; Roy P; De D
    IET Nanobiotechnol; 2019 Apr; 13(2):237-241. PubMed ID: 31051457
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High-performance partially aligned semiconductive single-walled carbon nanotube transistors achieved with a parallel technique.
    Wang Y; Pillai SK; Chan-Park MB
    Small; 2013 Sep; 9(17):2960-9. PubMed ID: 23441038
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chemically doped random network carbon nanotube p-n junction diode for rectifier.
    Biswas C; Lee SY; Ly TH; Ghosh A; Dang QN; Lee YH
    ACS Nano; 2011 Dec; 5(12):9817-23. PubMed ID: 22040293
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Computational modeling of a carbon nanotube-based DNA nanosensor.
    Kalantari-Nejad R; Bahrami M; Rafii-Tabar H; Rungger I; Sanvito S
    Nanotechnology; 2010 Nov; 21(44):445501. PubMed ID: 20935354
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Assessment of chemically separated carbon nanotubes for nanoelectronics.
    Zhang L; Zaric S; Tu X; Wang X; Zhao W; Dai H
    J Am Chem Soc; 2008 Feb; 130(8):2686-91. PubMed ID: 18251484
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Atomic scale modeling of electrically doped p-i-n FET from adenine based single wall nanotube.
    Dey D; Roy P; De D
    J Mol Graph Model; 2017 Sep; 76():118-127. PubMed ID: 28719843
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fullerenes, carbon nanotubes, and graphene for molecular electronics.
    Pinzón JR; Villalta-Cerdas A; Echegoyen L
    Top Curr Chem; 2012; 312():127-74. PubMed ID: 21894583
    [TBL] [Abstract][Full Text] [Related]  

  • 14.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 15.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 16.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 17.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 18.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 19.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 2.