These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 28719852)

  • 1. Rapid gamma spectrometric analysis of soil samples after radioactive fallout using a "conjugate view" technique.
    Isaksson M; Fahlström M; Ossipova N; Rosén K
    J Environ Radioact; 2017 Oct; 177():250-255. PubMed ID: 28719852
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Testing of an automatic outdoor gamma ambient dose-rate surveillance system in Tokyo and its calibration using measured deposition after the Fukushima nuclear accident.
    Zhang W; Korpach E; Berg R; Ungar K
    J Environ Radioact; 2013 Nov; 125():93-8. PubMed ID: 23317566
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evaluation of Monte Carlo-based calibrations of HPGe detectors for in situ gamma-ray spectrometry.
    Boson J; Plamboeck AH; Ramebäck H; Agren G; Johansson L
    J Environ Radioact; 2009 Nov; 100(11):935-40. PubMed ID: 19604609
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Application of a Monte Carlo method to the uncertainty assessment in in situ gamma-ray spectrometry.
    Persson L; Boson J; Nylén T; Ramebäck H
    J Environ Radioact; 2018 Jul; 187():1-7. PubMed ID: 29459254
    [TBL] [Abstract][Full Text] [Related]  

  • 5. DETERMINATION OF ACTIVITY PROFILE OF 137CS IN CONCRETE CORE SAMPLES.
    Dolniak J; Lištjak M; Slaninka A; Nečas V
    Radiat Prot Dosimetry; 2019 Dec; 186(2-3):306-309. PubMed ID: 31832660
    [TBL] [Abstract][Full Text] [Related]  

  • 6. CONTAMINATION DEPTH OF 137CS IN CONCRETE STRUCTURES.
    Listjak M; Slaninka A; Nečas V
    Radiat Prot Dosimetry; 2019 Dec; 186(2-3):301-305. PubMed ID: 31769482
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Aerial measurements of artificial radionuclides in Germany in case of a nuclear accident.
    Winkelmann I; Strobl C; Thomas M
    J Environ Radioact; 2004; 72(1-2):225-31. PubMed ID: 15162875
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Comparative analysis of the radionuclide composition in fallout after the Chernobyl and the Fukushima accidents].
    Kotenko KV; Shinkarev SM; Abramov IuV; Granovskaia EO; Iatsenko VN; Gavrilin IuI; Margulis UIa; Garetskaia OS; Imanaka T; Khoshi M
    Med Tr Prom Ekol; 2012; (10):1-5. PubMed ID: 23210176
    [TBL] [Abstract][Full Text] [Related]  

  • 9. REFERENCE SURFACE FOR IN SITU GAMMA SPECTROMETRY.
    Kroupa T; Setnička M; Čtvrtečková A; Marek R
    Radiat Prot Dosimetry; 2019 Dec; 186(2-3):263-267. PubMed ID: 31735964
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Efficiency corrections in determining the (137)Cs inventory of environmental soil samples by using relative measurement method and GEANT4 simulations.
    Li G; Liang Y; Xu J; Bai L
    J Environ Radioact; 2015 Aug; 146():94-101. PubMed ID: 25973538
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chernobyl fallout in the uppermost (0-3 cm) humus layer of forest soil in Finland, North East Russia and the Baltic countries in 2000--2003.
    Ylipieti J; Rissanen K; Kostiainen E; Salminen R; Tomilina O; Täht K; Gilucis A; Gregorauskiene V
    Sci Total Environ; 2008 Dec; 407(1):315-23. PubMed ID: 18845315
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Applicability study of using in-situ gamma-ray spectrometry technique for 137Cs and 210Pb(ex) inventories measurement in grassland environments.
    Li J; Li Y; Wang Y; Wu J; Funk R; Hoffmann C
    Appl Radiat Isot; 2010 Jun; 68(6):1143-9. PubMed ID: 20133146
    [TBL] [Abstract][Full Text] [Related]  

  • 13. On the gamma spectrometry efficiency of reference materials and soil samples.
    Mohammad Modarresi S; Farhad Masoudi S
    J Environ Radioact; 2018 Mar; 183():54-58. PubMed ID: 29306092
    [TBL] [Abstract][Full Text] [Related]  

  • 14. InSiCal - A tool for calculating calibration factors and activity concentrations in in situ gamma spectrometry.
    Mauring A; Vidmar T; Gäfvert T; Drefvelin J; Fazio A
    J Environ Radioact; 2018 Aug; 188():58-66. PubMed ID: 29074271
    [TBL] [Abstract][Full Text] [Related]  

  • 15. On the lognormality of radionuclide deposition.
    Grubich A
    J Environ Radioact; 2015 May; 143():47-51. PubMed ID: 25725453
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Analysis of the relationship binding in situ gamma count rates and soil sample activities: Implication on radionuclide inventory and uncertainty estimates due to spatial variability.
    Nguyen HL; de Fouquet C; Courbet C; Gurriaran R; Kashparov V; Levchuk S; Barker E
    J Environ Radioact; 2018 Dec; 192():349-361. PubMed ID: 30036775
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In-situ determination of deposited radionuclide activities: improved method using derived depth distributions from the measured photon spectra.
    Rybacek K; Jacob P; Meckbach R
    Health Phys; 1992 Jun; 62(6):519-28. PubMed ID: 1628983
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In situ gamma-ray spectrometry for environmental monitoring: a semi empirical calibration method.
    Boson J; Lidström K; Nylén T; Agren G; Johansson L
    Radiat Prot Dosimetry; 2006; 121(3):310-6. PubMed ID: 16632586
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of the composition of standard reference material on the accuracy of determinations of 210Pb and 137Cs in soils with gamma spectrometry.
    Li Y; Geng XC; Yu HQ; Wan GJ
    Appl Radiat Isot; 2011 Feb; 69(2):516-20. PubMed ID: 21071235
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Measurement of radionuclides and absorbed dose rates in soil samples of Peshawar, Pakistan, using gamma ray spectrometry.
    Khan HM; Ismail M; Zia MA; Khan K
    Isotopes Environ Health Stud; 2012 Jun; 48(2):295-301. PubMed ID: 22397699
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.