BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 28720122)

  • 1. Enhance the performance of current scoring functions with the aid of 3D protein-ligand interaction fingerprints.
    Liu J; Su M; Liu Z; Li J; Li Y; Wang R
    BMC Bioinformatics; 2017 Jul; 18(1):343. PubMed ID: 28720122
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Iterative Knowledge-Based Scoring Function for Protein-Ligand Interactions by Considering Binding Affinity Information.
    Zhao X; Li H; Zhang K; Huang SY
    J Phys Chem B; 2023 Oct; 127(42):9021-9034. PubMed ID: 37822259
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Exploring Scoring Function Space: Developing Computational Models for Drug Discovery.
    Bitencourt-Ferreira G; Villarreal MA; Quiroga R; Biziukova N; Poroikov V; Tarasova O; de Azevedo Junior WF
    Curr Med Chem; 2024; 31(17):2361-2377. PubMed ID: 36944627
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Guiding Conventional Protein-Ligand Docking Software with Convolutional Neural Networks.
    Jiang H; Fan M; Wang J; Sarma A; Mohanty S; Dokholyan NV; Mahdavi M; Kandemir MT
    J Chem Inf Model; 2020 Oct; 60(10):4594-4602. PubMed ID: 33100014
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Protein-Ligand Scoring with Convolutional Neural Networks.
    Ragoza M; Hochuli J; Idrobo E; Sunseri J; Koes DR
    J Chem Inf Model; 2017 Apr; 57(4):942-957. PubMed ID: 28368587
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The scoring of poses in protein-protein docking: current capabilities and future directions.
    Moal IH; Torchala M; Bates PA; Fernández-Recio J
    BMC Bioinformatics; 2013 Oct; 14():286. PubMed ID: 24079540
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Scoring functions and their evaluation methods for protein-ligand docking: recent advances and future directions.
    Huang SY; Grinter SZ; Zou X
    Phys Chem Chem Phys; 2010 Oct; 12(40):12899-908. PubMed ID: 20730182
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fingerprinting Interactions between Proteins and Ligands for Facilitating Machine Learning in Drug Discovery.
    Li Z; Huang R; Xia M; Patterson TA; Hong H
    Biomolecules; 2024 Jan; 14(1):. PubMed ID: 38254672
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ligand placement based on prior structures: the guided ligand-replacement method.
    Klei HE; Moriarty NW; Echols N; Terwilliger TC; Baldwin ET; Pokross M; Posy S; Adams PD
    Acta Crystallogr D Biol Crystallogr; 2014 Jan; 70(Pt 1):134-43. PubMed ID: 24419386
    [TBL] [Abstract][Full Text] [Related]  

  • 10. MCCS, a novel characterization method for protein-ligand complex.
    Chen M; Feng Z; Wang S; Lin W; Xie XQ
    Brief Bioinform; 2021 Jul; 22(4):. PubMed ID: 33051641
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Expanding the conformational selection paradigm in protein-ligand docking.
    Kuzu G; Keskin O; Gursoy A; Nussinov R
    Methods Mol Biol; 2012; 819():59-74. PubMed ID: 22183530
    [TBL] [Abstract][Full Text] [Related]  

  • 12. AffinityVAE: A multi-objective model for protein-ligand affinity prediction and drug design.
    Wang M; Li W; Yu X; Luo Y; Han K; Wang C; Jin Q
    Comput Biol Chem; 2023 Dec; 107():107971. PubMed ID: 37852036
    [TBL] [Abstract][Full Text] [Related]  

  • 13. CLAffinity: A Software Tool for Identification of Optimum Ligand Affinity for Competition-Based Primary Screens.
    Shave S; Pham NT; Auer M
    J Chem Inf Model; 2022 May; 62(10):2264-2268. PubMed ID: 35442032
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Predicting Affinity Through Homology (PATH): Interpretable Binding Affinity Prediction with Persistent Homology.
    Long Y; Donald BR
    bioRxiv; 2023 Nov; ():. PubMed ID: 38014181
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optimizing scoring function of protein-nucleic acid interactions with both affinity and specificity.
    Yan Z; Wang J
    PLoS One; 2013; 8(9):e74443. PubMed ID: 24098651
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Decision tree-based identification of important molecular fragments for protein-ligand binding.
    Li B; Wang Y; Yin Z; Xu L; Xie L; Xu X
    Chem Biol Drug Des; 2024 Jan; 103(1):e14427. PubMed ID: 38230776
    [TBL] [Abstract][Full Text] [Related]  

  • 17. KGDiff: towards explainable target-aware molecule generation with knowledge guidance.
    Qian H; Huang W; Tu S; Xu L
    Brief Bioinform; 2023 Nov; 25(1):. PubMed ID: 38040493
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Functional group based Ligand binding affinity scoring function at atomic environmental level.
    Varadwaj PK; Lahiri T
    Bioinformation; 2009; 3(6):268-74. PubMed ID: 19255647
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transferability of Geometric Patterns from Protein Self-Interactions to Protein-Ligand Interactions.
    Koehl A; Jagota M; Erdmann-Pham DD; Fung A; Song YS
    Pac Symp Biocomput; 2022; 27():22-33. PubMed ID: 34890133
    [TBL] [Abstract][Full Text] [Related]  

  • 20. 3D molecular generative framework for interaction-guided drug design.
    Zhung W; Kim H; Kim WY
    Nat Commun; 2024 Mar; 15(1):2688. PubMed ID: 38538598
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.