BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

661 related articles for article (PubMed ID: 28720495)

  • 1. Crystal structure of LysK, an enzyme catalyzing the last step of lysine biosynthesis in Thermus thermophilus, in complex with lysine: Insight into the mechanism for recognition of the amino-group carrier protein, LysW.
    Fujita S; Cho SH; Yoshida A; Hasebe F; Tomita T; Kuzuyama T; Nishiyama M
    Biochem Biophys Res Commun; 2017 Sep; 491(2):409-415. PubMed ID: 28720495
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structural insight into amino group-carrier protein-mediated lysine biosynthesis: crystal structure of the LysZ·LysW complex from Thermus thermophilus.
    Yoshida A; Tomita T; Fujimura T; Nishiyama C; Kuzuyama T; Nishiyama M
    J Biol Chem; 2015 Jan; 290(1):435-47. PubMed ID: 25392000
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Crystal structure of recombinant phosphoribosylpyrophosphate synthetase 2 from Thermus thermophilus HB27 complexed with ADP and sulfate ions.
    Timofeev VI; Sinitsyna EV; Kostromina MA; Muravieva TI; Makarov DA; Mikheeva OO; Kuranova IP; Esipov RS
    Acta Crystallogr F Struct Biol Commun; 2017 Jun; 73(Pt 6):369-375. PubMed ID: 28580926
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Crystal Structure of the LysY·LysW Complex from Thermus thermophilus.
    Shimizu T; Tomita T; Kuzuyama T; Nishiyama M
    J Biol Chem; 2016 May; 291(19):9948-59. PubMed ID: 26966182
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Lysine and arginine biosyntheses mediated by a common carrier protein in Sulfolobus.
    Ouchi T; Tomita T; Horie A; Yoshida A; Takahashi K; Nishida H; Lassak K; Taka H; Mineki R; Fujimura T; Kosono S; Nishiyama C; Masui R; Kuramitsu S; Albers SV; Kuzuyama T; Nishiyama M
    Nat Chem Biol; 2013 Apr; 9(4):277-83. PubMed ID: 23434852
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Crystal structures of a subunit of the formylglycinamide ribonucleotide amidotransferase, PurS, from Thermus thermophilus, Sulfolobus tokodaii and Methanocaldococcus jannaschii.
    Watanabe Y; Yanai H; Kanagawa M; Suzuki S; Tamura S; Okada K; Baba S; Kumasaka T; Agari Y; Chen L; Fu ZQ; Chrzas J; Wang BC; Nakagawa N; Ebihara A; Masui R; Kuramitsu S; Yokoyama S; Sampei GI; Kawai G
    Acta Crystallogr F Struct Biol Commun; 2016 Aug; 72(Pt 8):627-35. PubMed ID: 27487927
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Discovery of proteinaceous N-modification in lysine biosynthesis of Thermus thermophilus.
    Horie A; Tomita T; Saiki A; Kono H; Taka H; Mineki R; Fujimura T; Nishiyama C; Kuzuyama T; Nishiyama M
    Nat Chem Biol; 2009 Sep; 5(9):673-9. PubMed ID: 19620981
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of a lysK gene as an argE homolog in Thermus thermophilus HB27.
    Miyazaki J; Kobashi N; Fujii T; Nishiyama M; Yamane H
    FEBS Lett; 2002 Feb; 512(1-3):269-74. PubMed ID: 11852094
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Catalytic and structural properties of ATP-dependent caprolactamase from Pseudomonas jessenii.
    Marjanovic A; Rozeboom HJ; de Vries MS; Mayer C; Otzen M; Wijma HJ; Janssen DB
    Proteins; 2021 Sep; 89(9):1079-1098. PubMed ID: 33826169
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanism of substrate recognition and insight into feedback inhibition of homocitrate synthase from Thermus thermophilus.
    Okada T; Tomita T; Wulandari AP; Kuzuyama T; Nishiyama M
    J Biol Chem; 2010 Feb; 285(6):4195-4205. PubMed ID: 19996101
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An unexpected vestigial protein complex reveals the evolutionary origins of an
    Esquirol L; Peat TS; Wilding M; Liu JW; French NG; Hartley CJ; Onagi H; Nebl T; Easton CJ; Newman J; Scott C
    J Biol Chem; 2018 May; 293(20):7880-7891. PubMed ID: 29523689
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Crystal structure of a lysine biosynthesis enzyme, LysX, from Thermus thermophilus HB8.
    Sakai H; Vassylyeva MN; Matsuura T; Sekine Si; Gotoh K; Nishiyama M; Terada T; Shirouzu M; Kuramitsu S; Vassylyev DG; Yokoyama S
    J Mol Biol; 2003 Sep; 332(3):729-40. PubMed ID: 12963379
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structure-based mutational studies of
    Dharavath S; Raj I; Gourinath S
    Biochem J; 2017 Mar; 474(7):1221-1239. PubMed ID: 28126739
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Determinants of dual substrate specificity revealed by the crystal structure of homoisocitrate dehydrogenase from Thermus thermophilus in complex with homoisocitrate·Mg(2+)·NADH.
    Takahashi K; Tomita T; Kuzuyama T; Nishiyama M
    Biochem Biophys Res Commun; 2016 Sep; 478(4):1688-93. PubMed ID: 27601325
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structure of the adenylation domain Thr1 involved in the biosynthesis of 4-chlorothreonine in Streptomyces sp. OH-5093-protein flexibility and molecular bases of substrate specificity.
    Scaglione A; Fullone MR; Montemiglio LC; Parisi G; Zamparelli C; Vallone B; Savino C; Grgurina I
    FEBS J; 2017 Sep; 284(18):2981-2999. PubMed ID: 28704585
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Crystal structure of a novel prolidase from Deinococcus radiodurans identifies new subfamily of bacterial prolidases.
    Are VN; Jamdar SN; Ghosh B; Goyal VD; Kumar A; Neema S; Gadre R; Makde RD
    Proteins; 2017 Dec; 85(12):2239-2251. PubMed ID: 28929533
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Crystal structure analysis of the activation of histidine by Thermus thermophilus histidyl-tRNA synthetase.
    Aberg A; Yaremchuk A; Tukalo M; Rasmussen B; Cusack S
    Biochemistry; 1997 Mar; 36(11):3084-94. PubMed ID: 9115984
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Crystal structures of APRT from Francisella tularensis - an N-H···N hydrogen bond imparts adenine specificity in adenine phosporibosyltransferases.
    Pavithra GC; Ramagopal UA
    FEBS J; 2018 Jun; 285(12):2306-2318. PubMed ID: 29694705
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Crystal structure analysis of ornithine transcarbamylase from Thermus thermophilus --HB8 provides insights on the plasticity of the active site.
    Sundaresan R; Ebihara A; Kuramitsu S; Yokoyama S; Kumarevel T; Ponnuraj K
    Biochem Biophys Res Commun; 2015 Sep; 465(2):174-9. PubMed ID: 26210451
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structure/cleavage-based insights into helical perturbations at bulge sites within T. thermophilus Argonaute silencing complexes.
    Sheng G; Gogakos T; Wang J; Zhao H; Serganov A; Juranek S; Tuschl T; Patel DJ; Wang Y
    Nucleic Acids Res; 2017 Sep; 45(15):9149-9163. PubMed ID: 28911094
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 34.