BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

737 related articles for article (PubMed ID: 28720576)

  • 21. DUB3 Deubiquitylating Enzymes Regulate Hippo Pathway Activity by Regulating the Stability of ITCH, LATS and AMOT Proteins.
    Nguyen HT; Kugler JM; Cohen SM
    PLoS One; 2017; 12(1):e0169587. PubMed ID: 28061504
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Upregulation of miR-181c contributes to chemoresistance in pancreatic cancer by inactivating the Hippo signaling pathway.
    Chen M; Wang M; Xu S; Guo X; Jiang J
    Oncotarget; 2015 Dec; 6(42):44466-79. PubMed ID: 26561204
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Hippo and PI5P4K signaling intersect to control the transcriptional activation of YAP.
    Palamiuc L; Johnson JL; Haratipour Z; Loughran RM; Choi WJ; Arora GK; Tieu V; Ly K; Llorente A; Crabtree S; Wong JCY; Ravi A; Wiederhold T; Murad R; Blind RD; Emerling BM
    Sci Signal; 2024 May; 17(838):eado6266. PubMed ID: 38805583
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Mst2 and Lats kinases regulate apoptotic function of Yes kinase-associated protein (YAP).
    Oka T; Mazack V; Sudol M
    J Biol Chem; 2008 Oct; 283(41):27534-27546. PubMed ID: 18640976
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The Hippo pathway regulator KIBRA promotes podocyte injury by inhibiting YAP signaling and disrupting actin cytoskeletal dynamics.
    Meliambro K; Wong JS; Ray J; Calizo RC; Towne S; Cole B; El Salem F; Gordon RE; Kaufman L; He JC; Azeloglu EU; Campbell KN
    J Biol Chem; 2017 Dec; 292(51):21137-21148. PubMed ID: 28982981
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Transcriptional co-repressor function of the hippo pathway transducers YAP and TAZ.
    Kim M; Kim T; Johnson RL; Lim DS
    Cell Rep; 2015 Apr; 11(2):270-82. PubMed ID: 25843714
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Non-hippo kinases: indispensable roles in YAP/TAZ signaling and implications in cancer therapy.
    Zhu J; Wu T; Lin Q
    Mol Biol Rep; 2023 May; 50(5):4565-4578. PubMed ID: 36877351
    [TBL] [Abstract][Full Text] [Related]  

  • 28. TAZ Protein Accumulation Is Negatively Regulated by YAP Abundance in Mammalian Cells.
    Finch-Edmondson ML; Strauss RP; Passman AM; Sudol M; Yeoh GC; Callus BA
    J Biol Chem; 2015 Nov; 290(46):27928-38. PubMed ID: 26432639
    [TBL] [Abstract][Full Text] [Related]  

  • 29. KIBRA regulates Hippo signaling activity via interactions with large tumor suppressor kinases.
    Xiao L; Chen Y; Ji M; Dong J
    J Biol Chem; 2011 Mar; 286(10):7788-7796. PubMed ID: 21233212
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The polyomavirus middle T-antigen oncogene activates the Hippo pathway tumor suppressor Lats in a Src-dependent manner.
    Shanzer M; Ricardo-Lax I; Keshet R; Reuven N; Shaul Y
    Oncogene; 2015 Aug; 34(32):4190-8. PubMed ID: 25362852
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A YAP/TAZ-induced feedback mechanism regulates Hippo pathway homeostasis.
    Moroishi T; Park HW; Qin B; Chen Q; Meng Z; Plouffe SW; Taniguchi K; Yu FX; Karin M; Pan D; Guan KL
    Genes Dev; 2015 Jun; 29(12):1271-84. PubMed ID: 26109050
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A Non-Canonical Hippo Pathway Represses the Expression of ΔNp63.
    Low-Calle AM; Ghoneima H; Ortega N; Cuibus AM; Katz C; Prives C; Prywes R
    Mol Cell Biol; 2024 Jan; 44(1):27-42. PubMed ID: 38270135
    [TBL] [Abstract][Full Text] [Related]  

  • 33. SRC tyrosine kinase activates the YAP/TAZ axis and thereby drives tumor growth and metastasis.
    Lamar JM; Xiao Y; Norton E; Jiang ZG; Gerhard GM; Kooner S; Warren JSA; Hynes RO
    J Biol Chem; 2019 Feb; 294(7):2302-2317. PubMed ID: 30559289
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Angiomotins link F-actin architecture to Hippo pathway signaling.
    Mana-Capelli S; Paramasivam M; Dutta S; McCollum D
    Mol Biol Cell; 2014 May; 25(10):1676-85. PubMed ID: 24648494
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The Hippo pathway is controlled by Angiotensin II signaling and its reactivation induces apoptosis in podocytes.
    Wennmann DO; Vollenbröker B; Eckart AK; Bonse J; Erdmann F; Wolters DA; Schenk LK; Schulze U; Kremerskothen J; Weide T; Pavenstädt H
    Cell Death Dis; 2014 Nov; 5(11):e1519. PubMed ID: 25393475
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Deubiquitylating enzyme USP9x regulates hippo pathway activity by controlling angiomotin protein turnover.
    Thanh Nguyen H; Andrejeva D; Gupta R; Choudhary C; Hong X; Eichhorn PJ; Loya AC; Cohen SM
    Cell Discov; 2016; 2():16001. PubMed ID: 27462448
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Deregulation of the Hippo pathway in mouse mammary stem cells promotes mammary tumorigenesis.
    Li H; Gumbiner BM
    Mamm Genome; 2016 Dec; 27(11-12):556-564. PubMed ID: 27601049
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The Hippo pathway terminal effector TAZ/WWTR1 mediates oxaliplatin sensitivity in p53 proficient colon cancer cells.
    Slaninová V; Heron-Milhavet L; Robin M; Jeanson L; Aissanou A; Kantar D; Tosi D; Bréhélin L; Gongora C; Djiane A
    BMC Cancer; 2024 May; 24(1):587. PubMed ID: 38741073
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The Hippo pathway effectors YAP and TAZ promote cell growth by modulating amino acid signaling to mTORC1.
    Hansen CG; Ng YL; Lam WL; Plouffe SW; Guan KL
    Cell Res; 2015 Dec; 25(12):1299-313. PubMed ID: 26611634
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Angiomotin'g YAP into the nucleus for cell proliferation and cancer development.
    Hong W
    Sci Signal; 2013 Sep; 6(291):pe27. PubMed ID: 24003252
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 37.