BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

219 related articles for article (PubMed ID: 28720662)

  • 1. Proximal tubule apical endocytosis is modulated by fluid shear stress via an mTOR-dependent pathway.
    Long KR; Shipman KE; Rbaibi Y; Menshikova EV; Ritov VB; Eshbach ML; Jiang Y; Jackson EK; Baty CJ; Weisz OA
    Mol Biol Cell; 2017 Sep; 28(19):2508-2517. PubMed ID: 28720662
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cdc42 activation couples fluid shear stress to apical endocytosis in proximal tubule cells.
    Bhattacharyya S; Jean-Alphonse FG; Raghavan V; McGarvey JC; Rbaibi Y; Vilardaga JP; Carattino MD; Weisz OA
    Physiol Rep; 2017 Oct; 5(19):. PubMed ID: 29038362
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Shear stress-dependent regulation of apical endocytosis in renal proximal tubule cells mediated by primary cilia.
    Raghavan V; Rbaibi Y; Pastor-Soler NM; Carattino MD; Weisz OA
    Proc Natl Acad Sci U S A; 2014 Jun; 111(23):8506-11. PubMed ID: 24912170
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Shear stress and oxygen availability drive differential changes in opossum kidney proximal tubule cell metabolism and endocytosis.
    Ren Q; Gliozzi ML; Rittenhouse NL; Edmunds LR; Rbaibi Y; Locker JD; Poholek AC; Jurczak MJ; Baty CJ; Weisz OA
    Traffic; 2019 Jun; 20(6):448-459. PubMed ID: 30989771
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fluid Shear Stress-Induced Changes in Megalin Trafficking Enhance Endocytic Capacity in Proximal Tubule Cells.
    Lackner EM; Cowan IA; Long KR; Weisz OA; Shipman KE
    bioRxiv; 2024 Mar; ():. PubMed ID: 38562767
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Shear stress-induced changes of membrane transporter localization and expression in mouse proximal tubule cells.
    Duan Y; Weinstein AM; Weinbaum S; Wang T
    Proc Natl Acad Sci U S A; 2010 Dec; 107(50):21860-5. PubMed ID: 21106755
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Endocytic adaptation to functional demand by the kidney proximal tubule.
    Weisz OA
    J Physiol; 2021 Jul; 599(14):3437-3446. PubMed ID: 34036593
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An Adaptable Physiological Model of Endocytic Megalin Trafficking in Opossum Kidney Cells and Mouse Kidney Proximal Tubule.
    Shipman KE; Long KR; Cowan IA; Rbaibi Y; Baty CJ; Weisz OA
    Function (Oxf); 2022; 3(6):zqac046. PubMed ID: 36325513
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Flow stimulated endocytosis in the proximal tubule.
    Raghavan V; Weisz OA
    Curr Opin Nephrol Hypertens; 2015 Jul; 24(4):359-65. PubMed ID: 26050123
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cubilin- and megalin-mediated uptake of albumin in cultured proximal tubule cells of opossum kidney.
    Zhai XY; Nielsen R; Birn H; Drumm K; Mildenberger S; Freudinger R; Moestrup SK; Verroust PJ; Christensen EI; Gekle M
    Kidney Int; 2000 Oct; 58(4):1523-33. PubMed ID: 11012887
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chloride channels and endocytosis: new insights from Dent's disease and ClC-5 knockout mice.
    Devuyst O; Jouret F; Auzanneau C; Courtoy PJ
    Nephron Physiol; 2005; 99(3):p69-73. PubMed ID: 15637424
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Short-term functional adaptation of aquaporin-1 surface expression in the proximal tubule, a component of glomerulotubular balance.
    Pohl M; Shan Q; Petsch T; Styp-Rekowska B; Matthey P; Bleich M; Bachmann S; Theilig F
    J Am Soc Nephrol; 2015 Jun; 26(6):1269-78. PubMed ID: 25270072
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Receptor-Mediated Endocytosis in the Proximal Tubule.
    Eshbach ML; Weisz OA
    Annu Rev Physiol; 2017 Feb; 79():425-448. PubMed ID: 27813828
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chloride transporters and receptor-mediated endocytosis in the renal proximal tubule.
    Devuyst O; Luciani A
    J Physiol; 2015 Sep; 593(18):4151-64. PubMed ID: 25820368
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Flow stimulates drug transport in a human kidney proximal tubule-on-a-chip independent of primary cilia.
    Vriend J; Peters JGP; Nieskens TTG; Škovroňová R; Blaimschein N; Schmidts M; Roepman R; Schirris TJJ; Russel FGM; Masereeuw R; Wilmer MJ
    Biochim Biophys Acta Gen Subj; 2020 Jan; 1864(1):129433. PubMed ID: 31520681
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Discerning the role of mechanosensors in regulating proximal tubule function.
    Raghavan V; Weisz OA
    Am J Physiol Renal Physiol; 2016 Jan; 310(1):F1-5. PubMed ID: 26662200
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of microtubule disruption on endocytosis, membrane recycling and polarized distribution of Aquaporin-1 and gp330 in proximal tubule cells.
    Elkjaer ML; Birn H; Agre P; Christensen EI; Nielsen S
    Eur J Cell Biol; 1995 May; 67(1):57-72. PubMed ID: 7543847
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Application of physiological shear stress to renal tubular epithelial cells.
    Ferrell N; Sandoval RM; Molitoris BA; Brakeman P; Roy S; Fissell WH
    Methods Cell Biol; 2019; 153():43-67. PubMed ID: 31395384
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Kinetics of endocytosis in renal proximal tubule studied with ruthenium red as membrane marker.
    Birn H; Christensen EI; Nielsen S
    Am J Physiol; 1993 Feb; 264(2 Pt 2):F239-50. PubMed ID: 7680532
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Localization of intracellular compartments that exchange Na,K-ATPase molecules with the plasma membrane in a hormone-dependent manner.
    Efendiev R; Das-Panja K; Cinelli AR; Bertorello AM; Pedemonte CH
    Br J Pharmacol; 2007 Aug; 151(7):1006-13. PubMed ID: 17533417
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.