These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Combined expressional analysis, bioinformatics and targeted proteomics identify new potential therapeutic targets in glioblastoma stem cells. Stangeland B; Mughal AA; Grieg Z; Sandberg CJ; Joel M; Nygård S; Meling T; Murrell W; Vik Mo EO; Langmoen IA Oncotarget; 2015 Sep; 6(28):26192-215. PubMed ID: 26295306 [TBL] [Abstract][Full Text] [Related]
3. The mechanism of extracellular CypB promotes glioblastoma adaptation to glutamine deprivation microenvironment. Yin H; Liu Y; Dong Q; Wang H; Yan Y; Wang X; Wan X; Yuan G; Pan Y Cancer Lett; 2024 Aug; 597():216862. PubMed ID: 38582396 [TBL] [Abstract][Full Text] [Related]
5. High-capacity glycolytic and mitochondrial oxidative metabolisms mediate the growth ability of glioblastoma. Kim J; Han J; Jang Y; Kim SJ; Lee MJ; Ryu MJ; Kweon GR; Heo JY Int J Oncol; 2015 Sep; 47(3):1009-16. PubMed ID: 26202438 [TBL] [Abstract][Full Text] [Related]
6. Dual-targeting of aberrant glucose metabolism in glioblastoma. Shen H; Decollogne S; Dilda PJ; Hau E; Chung SA; Luk PP; Hogg PJ; McDonald KL J Exp Clin Cancer Res; 2015 Feb; 34(1):14. PubMed ID: 25652202 [TBL] [Abstract][Full Text] [Related]
7. Analysis of tumor metabolism reveals mitochondrial glucose oxidation in genetically diverse human glioblastomas in the mouse brain in vivo. Marin-Valencia I; Yang C; Mashimo T; Cho S; Baek H; Yang XL; Rajagopalan KN; Maddie M; Vemireddy V; Zhao Z; Cai L; Good L; Tu BP; Hatanpaa KJ; Mickey BE; Matés JM; Pascual JM; Maher EA; Malloy CR; Deberardinis RJ; Bachoo RM Cell Metab; 2012 Jun; 15(6):827-37. PubMed ID: 22682223 [TBL] [Abstract][Full Text] [Related]
8. γ-Glutamyl transferase 7 is a novel regulator of glioblastoma growth. Bui TT; Nitta RT; Kahn SA; Razavi SM; Agarwal M; Aujla P; Gholamin S; Recht L; Li G BMC Cancer; 2015 Apr; 15():225. PubMed ID: 25884624 [TBL] [Abstract][Full Text] [Related]
9. KHS101 disrupts energy metabolism in human glioblastoma cells and reduces tumor growth in mice. Polson ES; Kuchler VB; Abbosh C; Ross EM; Mathew RK; Beard HA; da Silva B; Holding AN; Ballereau S; Chuntharpursat-Bon E; Williams J; Griffiths HBS; Shao H; Patel A; Davies AJ; Droop A; Chumas P; Short SC; Lorger M; Gestwicki JE; Roberts LD; Bon RS; Allison SJ; Zhu S; Markowetz F; Wurdak H Sci Transl Med; 2018 Aug; 10(454):. PubMed ID: 30111643 [TBL] [Abstract][Full Text] [Related]
10. Metabolic profiling of glioblastoma stem cells reveals pyruvate carboxylase as a critical survival factor and potential therapeutic target. Renoult O; Laurent-Blond M; Awada H; Oliver L; Joalland N; Croyal M; Paris F; Gratas C; Pecqueur C Neuro Oncol; 2024 Sep; 26(9):1572-1586. PubMed ID: 38869884 [TBL] [Abstract][Full Text] [Related]
11. Metabolic therapy: a new paradigm for managing malignant brain cancer. Seyfried TN; Flores R; Poff AM; D'Agostino DP; Mukherjee P Cancer Lett; 2015 Jan; 356(2 Pt A):289-300. PubMed ID: 25069036 [TBL] [Abstract][Full Text] [Related]
12. miR-181d/MALT1 regulatory axis attenuates mesenchymal phenotype through NF-κB pathways in glioblastoma. Yang F; Liu X; Liu Y; Liu Y; Zhang C; Wang Z; Jiang T; Wang Y Cancer Lett; 2017 Jun; 396():1-9. PubMed ID: 28286260 [TBL] [Abstract][Full Text] [Related]
14. Coexpression analysis of CD133 and CD44 identifies proneural and mesenchymal subtypes of glioblastoma multiforme. Brown DV; Daniel PM; D'Abaco GM; Gogos A; Ng W; Morokoff AP; Mantamadiotis T Oncotarget; 2015 Mar; 6(8):6267-80. PubMed ID: 25749043 [TBL] [Abstract][Full Text] [Related]
15. MicroRNA‑518b functions as a tumor suppressor in glioblastoma by targeting PDGFRB. Xu X; Zhang F; Chen X; Ying Q Mol Med Rep; 2017 Oct; 16(4):5326-5332. PubMed ID: 28849154 [TBL] [Abstract][Full Text] [Related]
16. Downregulation of RND3/RhoE in glioblastoma patients promotes tumorigenesis through augmentation of notch transcriptional complex activity. Liu B; Lin X; Yang X; Dong H; Yue X; Andrade KC; Guo Z; Yang J; Wu L; Zhu X; Zhang S; Tian D; Wang J; Cai Q; Chen Q; Mao S; Chen Q; Chang J Cancer Med; 2015 Sep; 4(9):1404-16. PubMed ID: 26108681 [TBL] [Abstract][Full Text] [Related]
17. Integration of RNA-Seq and proteomics data identifies glioblastoma multiforme surfaceome signature. Syafruddin SE; Nazarie WFWM; Moidu NA; Soon BH; Mohtar MA BMC Cancer; 2021 Jul; 21(1):850. PubMed ID: 34301218 [TBL] [Abstract][Full Text] [Related]
18. Glioma cells require one-carbon metabolism to survive glutamine starvation. Tanaka K; Sasayama T; Nagashima H; Irino Y; Takahashi M; Izumi Y; Uno T; Satoh N; Kitta A; Kyotani K; Fujita Y; Hashiguchi M; Nakai T; Kohta M; Uozumi Y; Shinohara M; Hosoda K; Bamba T; Kohmura E Acta Neuropathol Commun; 2021 Jan; 9(1):16. PubMed ID: 33468252 [TBL] [Abstract][Full Text] [Related]
19. Combinatorial targeting of glutamine metabolism and lysosomal-based lipid metabolism effectively suppresses glioblastoma. Zhong Y; Geng F; Mazik L; Yin X; Becker AP; Mohammed S; Su H; Xing E; Kou Y; Chiang CY; Fan Y; Guo Y; Wang Q; Li PK; Mo X; Lefai E; He L; Cheng X; Zhang X; Chakravarti A; Guo D Cell Rep Med; 2024 Sep; 5(9):101706. PubMed ID: 39236712 [TBL] [Abstract][Full Text] [Related]
20. Antioxidant network-based signatures cluster glioblastoma into distinct redox-resistant phenotypes. Yang Y; More S; De Smet F; De Vleeschouwer S; Agostinis P Front Immunol; 2024; 15():1342977. PubMed ID: 38698847 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]