These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 28720872)

  • 21. Bayesian variable selection for gene expression modeling with regulatory motif binding sites in neuroinflammatory events.
    Liu KY; Zhou X; Kan K; Wong ST
    Neuroinformatics; 2006; 4(1):95-117. PubMed ID: 16595861
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Genome-wide map of RNA degradation kinetics patterns in dendritic cells after LPS stimulation facilitates identification of primary sequence and secondary structure motifs in mRNAs.
    Kumagai Y; Vandenbon A; Teraguchi S; Akira S; Suzuki Y
    BMC Genomics; 2016 Dec; 17(Suppl 13):1032. PubMed ID: 28155712
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Identification of upstream transcription factors (TFs) for expression signature genes in breast cancer.
    Zang H; Li N; Pan Y; Hao J
    Gynecol Endocrinol; 2017 Mar; 33(3):193-198. PubMed ID: 27809618
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Unraveling transcription regulatory networks by protein-DNA and protein-protein interaction mapping.
    Walhout AJ
    Genome Res; 2006 Dec; 16(12):1445-54. PubMed ID: 17053092
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Computational identification of transcription factor binding sites via a transcription-factor-centric clustering (TFCC) algorithm.
    Zhu Z; Pilpel Y; Church GM
    J Mol Biol; 2002 Apr; 318(1):71-81. PubMed ID: 12054769
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Global and local architecture of the mammalian microRNA-transcription factor regulatory network.
    Shalgi R; Lieber D; Oren M; Pilpel Y
    PLoS Comput Biol; 2007 Jul; 3(7):e131. PubMed ID: 17630826
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Modeling gene regulation from paired expression and chromatin accessibility data.
    Duren Z; Chen X; Jiang R; Wang Y; Wong WH
    Proc Natl Acad Sci U S A; 2017 Jun; 114(25):E4914-E4923. PubMed ID: 28576882
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Functional 5' UTR motif discovery with LESMoN: Local Enrichment of Sequence Motifs in biological Networks.
    Lavallée-Adam M; Cloutier P; Coulombe B; Blanchette M
    Nucleic Acids Res; 2017 Oct; 45(18):10415-10427. PubMed ID: 28977652
    [TBL] [Abstract][Full Text] [Related]  

  • 29. ChIP-seq analysis of genomic binding regions of five major transcription factors highlights a central role for ZIC2 in the mouse epiblast stem cell gene regulatory network.
    Matsuda K; Mikami T; Oki S; Iida H; Andrabi M; Boss JM; Yamaguchi K; Shigenobu S; Kondoh H
    Development; 2017 Jun; 144(11):1948-1958. PubMed ID: 28455373
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Identification of transcription factors (TFs) and targets involved in the cholangiocarcinoma (CCA) by integrated analysis.
    Yang L; Feng S; Yang Y
    Cancer Gene Ther; 2016 Dec; 23(12):439-445. PubMed ID: 27857060
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A novel meta-analysis approach of cancer transcriptomes reveals prevailing transcriptional networks in cancer cells.
    Niida A; Imoto S; Nagasaki M; Yamaguchi R; Miyano S
    Genome Inform; 2010 Jan; 22():121-31. PubMed ID: 20238423
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Construction and analysis of mRNA, miRNA, lncRNA, and TF regulatory networks reveal the key genes associated with prostate cancer.
    Ye Y; Li SL; Wang SY
    PLoS One; 2018; 13(8):e0198055. PubMed ID: 30138363
    [TBL] [Abstract][Full Text] [Related]  

  • 33. MoD Tools: regulatory motif discovery in nucleotide sequences from co-regulated or homologous genes.
    Pavesi G; Mereghetti P; Zambelli F; Stefani M; Mauri G; Pesole G
    Nucleic Acids Res; 2006 Jul; 34(Web Server issue):W566-70. PubMed ID: 16845071
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Genetic reconstruction of a functional transcriptional regulatory network.
    Hu Z; Killion PJ; Iyer VR
    Nat Genet; 2007 May; 39(5):683-7. PubMed ID: 17417638
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Predicting transcription factor binding motifs from DNA-binding domains, chromatin accessibility and gene expression data.
    Zamanighomi M; Lin Z; Wang Y; Jiang R; Wong WH
    Nucleic Acids Res; 2017 Jun; 45(10):5666-5677. PubMed ID: 28472398
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Organizing combinatorial transcription factor recruitment at cis-regulatory modules.
    Dubois-Chevalier J; Mazrooei P; Lupien M; Staels B; Lefebvre P; Eeckhoute J
    Transcription; 2018; 9(4):233-239. PubMed ID: 29105538
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Transcriptional Regulatory Network Analysis for Gastric Cancer Based on mRNA Microarray.
    Wang Y
    Pathol Oncol Res; 2017 Oct; 23(4):785-791. PubMed ID: 28078605
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Bioinformatics analyses of the differences between lung adenocarcinoma and squamous cell carcinoma using The Cancer Genome Atlas expression data.
    Sun F; Yang X; Jin Y; Chen L; Wang L; Shi M; Zhan C; Shi Y; Wang Q
    Mol Med Rep; 2017 Jul; 16(1):609-616. PubMed ID: 28560415
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Exploring transcription factors reveals crucial members and regulatory networks involved in different abiotic stresses in Brassica napus L.
    Wang P; Yang C; Chen H; Luo L; Leng Q; Li S; Han Z; Li X; Song C; Zhang X; Wang D
    BMC Plant Biol; 2018 Sep; 18(1):202. PubMed ID: 30231862
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Inferring coregulation of transcription factors and microRNAs in breast cancer.
    Wu JH; Sun YJ; Hsieh PH; Shieh GS
    Gene; 2013 Apr; 518(1):139-44. PubMed ID: 23246694
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.