These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 28720960)

  • 61. Inhibition of Methylglyoxal-Induced Histone H1 N
    Yang L; Li X; Wu Z; Feng C; Zhang T; Dai S; Dong Q
    J Agric Food Chem; 2018 Jun; 66(23):5812-5820. PubMed ID: 29758984
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Glyoxal and methylglyoxal trigger distinct signals for map family kinases and caspase activation in human endothelial cells.
    Akhand AA; Hossain K; Mitsui H; Kato M; Miyata T; Inagi R; Du J; Takeda K; Kawamoto Y; Suzuki H; Kurokawa K; Nakashima I
    Free Radic Biol Med; 2001 Jul; 31(1):20-30. PubMed ID: 11425486
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Curcumin inhibits advanced glycation end product-induced oxidative stress and inflammatory responses in endothelial cell damage via trapping methylglyoxal.
    Sun YP; Gu JF; Tan XB; Wang CF; Jia XB; Feng L; Liu JP
    Mol Med Rep; 2016 Feb; 13(2):1475-86. PubMed ID: 26718010
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Elevated levels of α-dicarbonyl compounds in the plasma of type II diabetics and their relevance with diabetic nephropathy.
    Wang XJ; Ma SB; Liu ZF; Li H; Gao WY
    J Chromatogr B Analyt Technol Biomed Life Sci; 2019 Feb; 1106-1107():19-25. PubMed ID: 30639946
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Imidazolium crosslinks derived from reaction of lysine with glyoxal and methylglyoxal are increased in serum proteins of uremic patients: evidence for increased oxidative stress in uremia.
    Odani H; Shinzato T; Usami J; Matsumoto Y; Brinkmann Frye E; Baynes JW; Maeda K
    FEBS Lett; 1998 May; 427(3):381-5. PubMed ID: 9637262
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Isolation and determination of alpha-dicarbonyl compounds by RP-HPLC-DAD in green and roasted coffee.
    Daglia M; Papetti A; Aceti C; Sordelli B; Spini V; Gazzani G
    J Agric Food Chem; 2007 Oct; 55(22):8877-82. PubMed ID: 17927199
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Protective effects of ferulic acid and related polyphenols against glyoxal- or methylglyoxal-induced cytotoxicity and oxidative stress in isolated rat hepatocytes.
    Maruf AA; Lip H; Wong H; O'Brien PJ
    Chem Biol Interact; 2015 Jun; 234():96-104. PubMed ID: 25446858
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Impact of Atherosclerosis- and Diabetes-Related Dicarbonyls on Vascular Endothelial Permeability: A Comparative Assessment.
    Samsonov MV; Khapchaev AY; Vorotnikov AV; Vlasik TN; Yanushevskaya EV; Sidorova MV; Efremov EE; Lankin VZ; Shirinsky VP
    Oxid Med Cell Longev; 2017; 2017():1625130. PubMed ID: 29098058
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Capture of single or multiple reactive carbonyl species by mangiferin under high temperatures.
    Du R; Liang Y; Si B; Chang C; Lu Y; Lv L
    Food Chem; 2024 Dec; 460(Pt 3):140712. PubMed ID: 39121767
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Survey of 1,2-dicarbonyl compounds in commercial honey of different floral origin.
    Arena E; Ballistreri G; Tomaselli F; Fallico B
    J Food Sci; 2011 Oct; 76(8):C1203-10. PubMed ID: 22417585
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Study on the Mechanism of Phenylacetaldehyde Formation in a Chinese Water Chestnut-Based Medium during the Steaming Process.
    Lin Y; Li G; Wu S; Li X; Luo X; Tan D; Luo Y
    Foods; 2023 Jan; 12(3):. PubMed ID: 36766028
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Efficient in vitro lowering of carbonyl stress by the glyoxalase system in conventional glucose peritoneal dialysis fluid.
    Inagi R; Miyata T; Ueda Y; Yoshino A; Nangaku M; van Ypersele de Strihou C; Kurokawa K
    Kidney Int; 2002 Aug; 62(2):679-87. PubMed ID: 12110033
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Catechin inhibits glycated phosphatidylethanolamine formation by trapping dicarbonyl compounds and forming quinone.
    Han L; Lin Q; Liu G; Han D; Niu L; Su D
    Food Funct; 2019 May; 10(5):2491-2503. PubMed ID: 30977506
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Reaction of metformin with dicarbonyl compounds. Possible implication in the inhibition of advanced glycation end product formation.
    Ruggiero-Lopez D; Lecomte M; Moinet G; Patereau G; Lagarde M; Wiernsperger N
    Biochem Pharmacol; 1999 Dec; 58(11):1765-73. PubMed ID: 10571251
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Quercetin inhibits advanced glycation end product formation via chelating metal ions, trapping methylglyoxal, and trapping reactive oxygen species.
    Bhuiyan MN; Mitsuhashi S; Sigetomi K; Ubukata M
    Biosci Biotechnol Biochem; 2017 May; 81(5):882-890. PubMed ID: 28388357
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Analysis of sugar degradation products with α-dicarbonyl structure in carbonated soft drinks by UHPLC-DAD-MS/MS.
    Gensberger S; Glomb MA; Pischetsrieder M
    J Agric Food Chem; 2013 Oct; 61(43):10238-45. PubMed ID: 23452313
    [TBL] [Abstract][Full Text] [Related]  

  • 77. A comparison of dicarbonyl stress and advanced glycation endproducts in lifelong endurance athletes vs. sedentary controls.
    Maessen MFH; Schalkwijk CG; Verheggen RJHM; Aengevaeren VL; Hopman MTE; Eijsvogels TMH
    J Sci Med Sport; 2017 Oct; 20(10):921-926. PubMed ID: 28416154
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Artichoke (Cynara cardunculus L. var. scolymus) waste as a natural source of carbonyl trapping and antiglycative agents.
    Maietta M; Colombo R; Lavecchia R; Sorrenti M; Zuorro A; Papetti A
    Food Res Int; 2017 Oct; 100(Pt 1):780-790. PubMed ID: 28873750
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Effect of dicarbonyl modification of fibronectin on retinal capillary pericytes.
    Liu B; Bhat M; Padival AK; Smith DG; Nagaraj RH
    Invest Ophthalmol Vis Sci; 2004 Jun; 45(6):1983-95. PubMed ID: 15161867
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Modification of chickpea cystatin by reactive dicarbonyl species: Glycation, oxidation and aggregation.
    Bhat SA; Bhat WF; Afsar M; Khan MS; Al-Bagmi MS; Bano B
    Arch Biochem Biophys; 2018 Jul; 650():103-115. PubMed ID: 29775569
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.