These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 28721203)

  • 1. Evaluation of mineral oil saturated hydrocarbons (MOSH) and mineral oil aromatic hydrocarbons (MOAH) in pure mineral hydrocarbon-based cosmetics and cosmetic raw materials using
    Lachenmeier DW; Mildau G; Rullmann A; Marx G; Walch SG; Hartwig A; Kuballa T
    F1000Res; 2017; 6():682. PubMed ID: 28721203
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Analytical Methods for the Determination of Mineral Oil Saturated Hydrocarbons (MOSH) and Mineral Oil Aromatic Hydrocarbons (MOAH)-A Short Review.
    Weber S; Schrag K; Mildau G; Kuballa T; Walch SG; Lachenmeier DW
    Anal Chem Insights; 2018; 13():1177390118777757. PubMed ID: 29887729
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Supercritical fluid chromatography as a rapid single-step method for the determination of mineral oil saturated and aromatic hydrocarbons in purified mineral oils for food and cosmetics applications.
    García-Cicourel AR; van de Velde B; Roskam G; Janssen HG
    J Chromatogr A; 2020 Mar; 1614():460713. PubMed ID: 31761438
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Update of on-line coupled liquid chromatography - gas chromatography for the analysis of mineral oil hydrocarbons in foods and cosmetics.
    Biedermann M; Munoz C; Grob K
    J Chromatogr A; 2017 Oct; 1521():140-149. PubMed ID: 28941808
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Screening for mineral oil saturated and aromatic hydrocarbons in paper and cardboard directly by planar solid phase extraction and by its coupling to gas chromatography.
    Wagner M; Oellig C
    J Chromatogr A; 2019 Mar; 1588():48-57. PubMed ID: 30591246
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mineral oil in food, cosmetic products, and in products regulated by other legislations.
    Pirow R; Blume A; Hellwig N; Herzler M; Huhse B; Hutzler C; Pfaff K; Thierse HJ; Tralau T; Vieth B; Luch A
    Crit Rev Toxicol; 2019 Oct; 49(9):742-789. PubMed ID: 31939687
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The analysis of saturated and aromatic mineral oil hydrocarbons in dry foods and from recycled paperboard packages by online HPLC-GC-FID.
    Canavar Ö; Kappenstein O; Luch A
    Food Addit Contam Part A Chem Anal Control Expo Risk Assess; 2018 Dec; 35(12):2471-2481. PubMed ID: 30451585
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Survey of mineral oil hydrocarbons in Chinese commercial complementary foods for infants and young children.
    Liu L; Li B; Yang D; Ouyang J; Sui H; Wu Y
    Food Addit Contam Part A Chem Anal Control Expo Risk Assess; 2021 Sep; 38(9):1441-1455. PubMed ID: 34077340
    [TBL] [Abstract][Full Text] [Related]  

  • 9. On-line liquid chromatography-comprehensive two dimensional gas chromatography with dual detection for the analysis of mineral oil and synthetic hydrocarbons in cosmetic lip care products.
    Zoccali M; Tranchida PQ; Mondello L
    Anal Chim Acta; 2019 Feb; 1048():221-226. PubMed ID: 30598154
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Screening for mineral oil hydrocarbons in vegetable oils by silver ion-planar solid phase extraction.
    Wagner M; Oellig C
    J Chromatogr A; 2022 Jan; 1662():462732. PubMed ID: 34910963
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Determining MOSH and MOAH with High Sensitivity in Vegetable Oil─A New, Reliable, and Comparable Approach Using Online LC-GC-FID─Evaluation of Method Precision Data.
    Albert C; Humpf HU; Brühl L
    J Agric Food Chem; 2022 Aug; 70(33):10337-10348. PubMed ID: 35969271
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Migration of mineral oil hydrocarbons from food contact papers into food simulants and extraction from their raw materials.
    Pan JJ; Chen YF; Zheng JG; Hu C; Li D; Zhong HN
    Food Addit Contam Part A Chem Anal Control Expo Risk Assess; 2021 May; 38(5):870-880. PubMed ID: 33818316
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Automated workflow utilizing saponification and improved epoxidation for the sensitive determination of mineral oil saturated and aromatic hydrocarbons in edible oils and fats.
    Nestola M
    J Chromatogr A; 2022 Oct; 1682():463523. PubMed ID: 36179602
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Concentrations of migrated mineral oil/polyolefin oligomeric saturated hydrocarbons (MOSH/POSH) in Chinese commercial milk powder products.
    Zhang S; Liu L; Li B; Xie Y; Ouyang J; Wu Y
    Food Addit Contam Part A Chem Anal Control Expo Risk Assess; 2019 Aug; 36(8):1261-1272. PubMed ID: 31192768
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Advanced separation of mineral oil aromatic hydrocarbons by number of aromatic rings using donor-acceptor-complex chromatography to extend on-line coupled liquid chromatography-gas chromatography.
    Lommatzsch M; Eckardt M; Holzapfel J; Säger S; Simat TJ
    J Chromatogr A; 2024 Jan; 1715():464600. PubMed ID: 38176352
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optimization and validation of microwave assisted saponification (MAS) followed by epoxidation for high-sensitivity determination of mineral oil aromatic hydrocarbons (MOAH) in extra virgin olive oil.
    Menegoz Ursol L; Conchione C; Srbinovska A; Moret S
    Food Chem; 2022 Feb; 370():130966. PubMed ID: 34624693
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Offline Solid-Phase Extraction and Separation of Mineral Oil Saturated Hydrocarbons and Mineral Oil Aromatic Hydrocarbons in Edible Oils, and Analysis via GC with a Flame Ionization Detector.
    Ruiz JLH; Liébanas JA; Vidal JLM; Garrido Frenich A; González RR
    Foods; 2021 Aug; 10(9):. PubMed ID: 34574136
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optimization of pressurized liquid extraction (PLE) for rapid determination of mineral oil saturated (MOSH) and aromatic hydrocarbons (MOAH) in cardboard and paper intended for food contact.
    Moret S; Sander M; Purcaro G; Scolaro M; Barp L; Conte LS
    Talanta; 2013 Oct; 115():246-52. PubMed ID: 24054587
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Use of a low-cost, lab-made Y-interface for liquid-gas chromatography coupling for the analysis of mineral oils in food samples.
    Zoccali M; Salerno TMG; Tranchida PQ; Mondello L
    J Chromatogr A; 2021 Jul; 1648():462191. PubMed ID: 34000596
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Potential for short-term migration of mineral oil hydrocarbons from coated and uncoated food contact paper and board into a fatty food simulant.
    Pack EC; Jang DY; Cha MG; Koo YJ; Kim HS; Yu HH; Park SC; Kim YS; Lim KM; Lee SH; Choi DW
    Food Addit Contam Part A Chem Anal Control Expo Risk Assess; 2020 May; 37(5):858-868. PubMed ID: 32160105
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.