These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
142 related articles for article (PubMed ID: 28721203)
21. A study on the impact of harvesting operations on the mineral oil contamination of olive oils. Menegoz Ursol L; Conchione C; Peroni D; Carretta A; Moret S Food Chem; 2023 Apr; 406():135032. PubMed ID: 36493572 [TBL] [Abstract][Full Text] [Related]
22. Comprehensive off-line silver phase liquid chromatography × gas chromatography with flame ionization and vacuum ultraviolet detection for the detailed characterization of mineral oil aromatic hydrocarbons. García-Cicourel AR; van de Velde B; Verduin J; Janssen HG J Chromatogr A; 2019 Dec; 1607():460391. PubMed ID: 31362830 [TBL] [Abstract][Full Text] [Related]
23. Mineral oil and synthetic hydrocarbons in cosmetic lip products. Niederer M; Stebler T; Grob K Int J Cosmet Sci; 2016 Apr; 38(2):194-200. PubMed ID: 26352930 [TBL] [Abstract][Full Text] [Related]
24. Analysis of mineral oil in food: results of a Belgian market survey. Van Heyst A; Vanlancker M; Vercammen J; Van den Houwe K; Mertens B; Elskens M; Van Hoeck E Food Addit Contam Part A Chem Anal Control Expo Risk Assess; 2018 Oct; 35(10):2062-2075. PubMed ID: 30199335 [TBL] [Abstract][Full Text] [Related]
25. Update of the risk assessment of mineral oil hydrocarbons in food. ; Schrenk D; Bignami M; Bodin L; Del Mazo J; Grasl-Kraupp B; Hogstrand C; Hoogenboom LR; Leblanc JC; Nebbia CS; Nielsen E; Ntzani E; Petersen A; Sand S; Schwerdtle T; Vleminckx C; Wallace H; Alexander J; Goldbeck C; Grob K; Gómez Ruiz JÁ; Mosbach-Schulz O; Binaglia M; Chipman JK EFSA J; 2023 Sep; 21(9):e08215. PubMed ID: 37711880 [TBL] [Abstract][Full Text] [Related]
26. Optimization of sample clean-up for the determination of small amounts of MOSH and MOAH in edible oils - method DGF C-VI 22 (20). Albert C; Bäsler K; Humpf HU; Brühl L Food Addit Contam Part A Chem Anal Control Expo Risk Assess; 2023 Nov; 40(11):1423-1439. PubMed ID: 37768112 [TBL] [Abstract][Full Text] [Related]
28. The Mineral Oil Hydrocarbon Paradox in Olive Pomace Oils. Gómez-Coca RB; Pérez-Camino MDC; Moreda W Foods; 2023 Jan; 12(3):. PubMed ID: 36765963 [TBL] [Abstract][Full Text] [Related]
29. On-line coupled high performance liquid chromatography-gas chromatography for the analysis of contamination by mineral oil. Part 1: method of analysis. Biedermann M; Grob K J Chromatogr A; 2012 Sep; 1255():56-75. PubMed ID: 22770383 [TBL] [Abstract][Full Text] [Related]
30. Review on chromatographic and specific detection methodologies for unravelling the complexity of MOAH in foods. Polyakova A; van Leeuwen S; Peters R Anal Chim Acta; 2022 Nov; 1234():340098. PubMed ID: 36328715 [TBL] [Abstract][Full Text] [Related]
31. Direct analysis of aromatic hydrocarbons in purified mineral oils for foods and cosmetics applications using gas chromatography with vacuum ultraviolet detection. García-Cicourel AR; Janssen HG J Chromatogr A; 2019 Apr; 1590():113-120. PubMed ID: 30655028 [TBL] [Abstract][Full Text] [Related]
32. Rapid and sensitive solid phase extraction-large volume injection-gas chromatography for the analysis of mineral oil saturated and aromatic hydrocarbons in cardboard and dried foods. Moret S; Barp L; Purcaro G; Conte LS J Chromatogr A; 2012 Jun; 1243():1-5. PubMed ID: 22560450 [TBL] [Abstract][Full Text] [Related]
33. Development of a manual method for the determination of mineral oil in foods and paperboard. Fiselier K; Grundböck F; Schön K; Kappenstein O; Pfaff K; Hutzler C; Luch A; Grob K J Chromatogr A; 2013 Jan; 1271(1):192-200. PubMed ID: 23228919 [TBL] [Abstract][Full Text] [Related]
34. A Study on Mineral Oil Hydrocarbons (MOH) Contamination in Pig Diets and Its Transfer to Back Fat and Loin Tissues. Albendea P; Conchione C; Menegoz Ursol L; Moret S Animals (Basel); 2024 May; 14(10):. PubMed ID: 38791667 [TBL] [Abstract][Full Text] [Related]
35. Determination of mineral oil aromatic hydrocarbons in edible oils and fats by online liquid chromatography-gas chromatography-flame ionization detection - Evaluation of automated removal strategies for biogenic olefins. Nestola M; Schmidt TC J Chromatogr A; 2017 Jul; 1505():69-76. PubMed ID: 28533029 [TBL] [Abstract][Full Text] [Related]
36. Comprehensive two-dimensional gas chromatography for characterizing mineral oils in foods and distinguishing them from synthetic hydrocarbons. Biedermann M; Grob K J Chromatogr A; 2015 Jan; 1375():146-53. PubMed ID: 25526977 [TBL] [Abstract][Full Text] [Related]
37. Comparison of carrier gases for the separation and quantification of mineral oil hydrocarbon (MOH) fractions using online coupled high performance liquid chromatography-gas chromatography-flame ionisation detection. Groschke M; Becker R J Chromatogr A; 2024 Jul; 1726():464946. PubMed ID: 38744185 [TBL] [Abstract][Full Text] [Related]
38. Microwave assisted saponification (MAS) followed by on-line liquid chromatography (LC)-gas chromatography (GC) for high-throughput and high-sensitivity determination of mineral oil in different cereal-based foodstuffs. Moret S; Scolaro M; Barp L; Purcaro G; Conte LS Food Chem; 2016 Apr; 196():50-7. PubMed ID: 26593464 [TBL] [Abstract][Full Text] [Related]
39. Investigation of the effect of refining on the presence of targeted mineral oil aromatic hydrocarbons in coconut oil. Bauwens G; Cavaco Soares A; Lacoste F; Ribera D; Blomsma C; Berg I; Campos F; Coenradie A; Creanga A; Zwagerman R; Purcaro G Food Addit Contam Part A Chem Anal Control Expo Risk Assess; 2023 Mar; 40(3):392-403. PubMed ID: 36608113 [TBL] [Abstract][Full Text] [Related]
40. Comparability of mineral oil testing for dry food and cardboard samples - Perspectives from different PT rounds. Funk M; Hillmann H; Derra R; Leist U Food Addit Contam Part A Chem Anal Control Expo Risk Assess; 2018 Feb; 35(2):305-315. PubMed ID: 29095130 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]