These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
8. [Development of An Implantable Optrode for Optogenetic Stimulation]. Yue S; Yuan M; Zhang Y; Wang X; Wang S Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2016 Apr; 33(2):337-42. PubMed ID: 29708670 [TBL] [Abstract][Full Text] [Related]
9. A state-based probabilistic method for decoding hand position during movement from ECoG signals in non-human primate. Farrokhi B; Erfanian A J Neural Eng; 2020 May; 17(2):026042. PubMed ID: 32224511 [TBL] [Abstract][Full Text] [Related]
10. A glass-coated tungsten microelectrode enclosing optical fibers for optogenetic exploration in primate deep brain structures. Tamura K; Ohashi Y; Tsubota T; Takeuchi D; Hirabayashi T; Yaguchi M; Matsuyama M; Sekine T; Miyashita Y J Neurosci Methods; 2012 Oct; 211(1):49-57. PubMed ID: 22971353 [TBL] [Abstract][Full Text] [Related]
11. Fabrication and modification of implantable optrode arrays for Wang L; Huang K; Zhong C; Wang L; Lu Y Biophys Rep; 2018; 4(2):82-93. PubMed ID: 29756008 [TBL] [Abstract][Full Text] [Related]
13. An integrated μLED optrode for optogenetic stimulation and electrical recording. Cao H; Gu L; Mohanty SK; Chiao JC IEEE Trans Biomed Eng; 2013 Jan; 60(1):225-9. PubMed ID: 22968201 [TBL] [Abstract][Full Text] [Related]
14. Poly(3,4-ethylenedioxythiophene)/poly(styrenesulfonate)-poly(vinyl alcohol)/poly(acrylic acid) interpenetrating polymer networks for improving optrode-neural tissue interface in optogenetics. Lu Y; Li Y; Pan J; Wei P; Liu N; Wu B; Cheng J; Lu C; Wang L Biomaterials; 2012 Jan; 33(2):378-94. PubMed ID: 22018384 [TBL] [Abstract][Full Text] [Related]
15. A fiber-based implantable multi-optrode array with contiguous optical and electrical sites. Chen S; Pei W; Gui Q; Chen Y; Zhao S; Wang H; Chen H J Neural Eng; 2013 Aug; 10(4):046020. PubMed ID: 23883568 [TBL] [Abstract][Full Text] [Related]
16. An Implantable Ultrasonically Powered System for Optogenetic Stimulation with Power-Efficient Active Rectifier and Charge-Reuse Capability. Rashidi A; Laursen K; Hosseini S; Huynh HA; Moradi F IEEE Trans Biomed Circuits Syst; 2019 Dec; 13(6):1362-1371. PubMed ID: 31647446 [TBL] [Abstract][Full Text] [Related]
17. A 3D glass optrode array for optical neural stimulation. Abaya TV; Blair S; Tathireddy P; Rieth L; Solzbacher F Biomed Opt Express; 2012 Dec; 3(12):3087-104. PubMed ID: 23243561 [TBL] [Abstract][Full Text] [Related]
18. Theoretical analysis of low-power fast optogenetic control of firing of Chronos-expressing neurons. Saran S; Gupta N; Roy S Neurophotonics; 2018 Apr; 5(2):025009. PubMed ID: 29845088 [TBL] [Abstract][Full Text] [Related]
19. Sapphire-Based Optrode for Low Noise Neural Recording and Optogenetic Manipulation. Xu Y; Li BZ; Huang X; Liu Y; Liang Z; Yang X; Lin L; Wang L; Xia Y; Ridenour M; Huang Y; Zhen Y; Klug A; Pun SH; Lei TC; Zhang B bioRxiv; 2024 Aug; ():. PubMed ID: 39229222 [TBL] [Abstract][Full Text] [Related]
20. Visual responses in the dorsolateral frontal cortex of marmoset monkeys. Feizpour A; Majka P; Chaplin TA; Rowley D; Yu HH; Zavitz E; Price NSC; Rosa MGP; Hagan MA J Neurophysiol; 2021 Jan; 125(1):296-304. PubMed ID: 33326337 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]