These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
136 related articles for article (PubMed ID: 28721445)
1. A two-step bioprocessing strategy in pentonic acids production from lignocellulosic pre-hydrolysate. Zhou X; Huang L; Xu Y; Yu S Bioprocess Biosyst Eng; 2017 Nov; 40(11):1581-1587. PubMed ID: 28721445 [TBL] [Abstract][Full Text] [Related]
2. Simultaneous Bioconversion of Xylose and Glycerol to Xylonic Acid and 1,3-Dihydroxyacetone from the Mixture of Pre-Hydrolysates and Ethanol-Fermented Waste Liquid by Gluconobacter oxydans. Zhou X; Xu Y; Yu S Appl Biochem Biotechnol; 2016 Jan; 178(1):1-8. PubMed ID: 26378011 [TBL] [Abstract][Full Text] [Related]
3. Efficient coproduction of gluconic acid and xylonic acid from lignocellulosic hydrolysate by Zn(II)-selective inhibition on whole-cell catalysis by Gluconobacter oxydans. Zhou X; Zhou X; Huang L; Cao R; Xu Y Bioresour Technol; 2017 Nov; 243():855-859. PubMed ID: 28724257 [TBL] [Abstract][Full Text] [Related]
4. Fermentative production of high titer gluconic and xylonic acids from corn stover feedstock by Gluconobacter oxydans and techno-economic analysis. Zhang H; Liu G; Zhang J; Bao J Bioresour Technol; 2016 Nov; 219():123-131. PubMed ID: 27484668 [TBL] [Abstract][Full Text] [Related]
5. Overexpression of mGDH in Gluconobacter oxydans to improve D-xylonic acid production from corn stover hydrolysate. Mao X; Zhang B; Zhao C; Lin J; Wei D Microb Cell Fact; 2022 Mar; 21(1):35. PubMed ID: 35264166 [TBL] [Abstract][Full Text] [Related]
6. Process for calcium xylonate production as a concrete admixture derived from in-situ fermentation of wheat straw pre-hydrolysate. Zhou X; Zhou X; Tang X; Xu Y Bioresour Technol; 2018 Aug; 261():288-293. PubMed ID: 29677656 [TBL] [Abstract][Full Text] [Related]
7. A cost-practical cell-recycling process for xylonic acid bioproduction from acidic lignocellulosic hydrolysate with whole-cell catalysis of Gluconobacter oxydans. Han J; Hua X; Zhou X; Xu B; Wang H; Huang G; Xu Y Bioresour Technol; 2021 Aug; 333():125157. PubMed ID: 33878501 [TBL] [Abstract][Full Text] [Related]
8. Cascade hydrolysis and fermentation of corn stover for production of high titer gluconic and xylonic acids. Hou W; Zhang M; Bao J Bioresour Technol; 2018 Sep; 264():395-399. PubMed ID: 29958773 [TBL] [Abstract][Full Text] [Related]
9. Oxidative production of xylonic acid using xylose in distillation stillage of cellulosic ethanol fermentation broth by Gluconobacter oxydans. Zhang H; Han X; Wei C; Bao J Bioresour Technol; 2017 Jan; 224():573-580. PubMed ID: 27955866 [TBL] [Abstract][Full Text] [Related]
10. Bioethanol fermentation of concentrated rice straw hydrolysate using co-culture of Saccharomyces cerevisiae and Pichia stipitis. Yadav KS; Naseeruddin S; Prashanthi GS; Sateesh L; Rao LV Bioresour Technol; 2011 Jun; 102(11):6473-8. PubMed ID: 21470850 [TBL] [Abstract][Full Text] [Related]
11. Improved Utility of Pentoses from Lignocellulolytic Hydrolysate: Challenges and Perspectives for Enabling Saccharomyces cerevisiae. da Silva RR; Prista C; Loureiro Dias MC; Boscolo M; da Silva R; Gomes E J Agric Food Chem; 2019 May; 67(21):5919-5921. PubMed ID: 31099567 [No Abstract] [Full Text] [Related]
12. Enhancement of Gluconobacter oxydans Resistance to Lignocellulosic-Derived Inhibitors in Xylonic Acid Production by Overexpressing Thioredoxin. Shen Y; Zhou X; Xu Y Appl Biochem Biotechnol; 2020 Jul; 191(3):1072-1083. PubMed ID: 31960365 [TBL] [Abstract][Full Text] [Related]
13. Engineering of Saccharomyces cerevisiae for efficient fermentation of cellulose. Oh EJ; Jin YS FEMS Yeast Res; 2020 Feb; 20(1):. PubMed ID: 31917414 [TBL] [Abstract][Full Text] [Related]
14. Ethanol production from residual wood chips of cellulose industry: acid pretreatment investigation, hemicellulosic hydrolysate fermentation, and remaining solid fraction fermentation by SSF process. Silva NL; Betancur GJ; Vasquez MP; Gomes Ede B; Pereira N Appl Biochem Biotechnol; 2011 Apr; 163(7):928-36. PubMed ID: 20890779 [TBL] [Abstract][Full Text] [Related]
15. Deletion of the PHO13 gene in Saccharomyces cerevisiae improves ethanol production from lignocellulosic hydrolysate in the presence of acetic and formic acids, and furfural. Fujitomi K; Sanda T; Hasunuma T; Kondo A Bioresour Technol; 2012 May; 111():161-6. PubMed ID: 22357292 [TBL] [Abstract][Full Text] [Related]
16. Screening of Gluconobacter oxydans in xylonic acid fermentation for tolerance of the inhibitors formed dilute acid pretreatment. Jiang W; Dai L; Tan X; Zhou X; Xu Y Bioprocess Biosyst Eng; 2023 Apr; 46(4):589-597. PubMed ID: 36670301 [TBL] [Abstract][Full Text] [Related]
17. Physical insights of ultrasound-assisted ethanol production from composite feedstock of invasive weeds. Borah AJ; Agarwal M; Goyal A; Moholkar VS Ultrason Sonochem; 2019 Mar; 51():378-385. PubMed ID: 30097257 [TBL] [Abstract][Full Text] [Related]
18. Enhancement in xylonate production from hemicellulose pre-hydrolysate by powdered activated carbon treatment. Dai L; Jiang W; Zhou X; Xu Y Bioresour Technol; 2020 Nov; 316():123944. PubMed ID: 32769000 [TBL] [Abstract][Full Text] [Related]
19. Influence of high solid concentration on enzymatic hydrolysis and fermentation of steam-exploded corn stover biomass. Lu Y; Wang Y; Xu G; Chu J; Zhuang Y; Zhang S Appl Biochem Biotechnol; 2010 Jan; 160(2):360-9. PubMed ID: 18626577 [TBL] [Abstract][Full Text] [Related]
20. Bio-utilization of cheese manufacturing wastes (cheese whey powder) for bioethanol and specific product (galactonic acid) production via a two-step bioprocess. Zhou X; Hua X; Huang L; Xu Y Bioresour Technol; 2019 Jan; 272():70-76. PubMed ID: 30312870 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]