These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 28721537)

  • 1. Controlling activation barrier by carbon nanotubes as nano-chemical reactors.
    Méjri A; Picaud F; El Khalifi M; Gharbi T; Tangour B
    J Mol Model; 2017 Aug; 23(8):229. PubMed ID: 28721537
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chemical reactions confined within carbon nanotubes.
    Miners SA; Rance GA; Khlobystov AN
    Chem Soc Rev; 2016 Aug; 45(17):4727-46. PubMed ID: 27301444
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Importance of the alignment of polar π conjugated molecules inside carbon nanotubes in determining second-order non-linear optical properties.
    Yumura T; Yamamoto W
    Phys Chem Chem Phys; 2017 Sep; 19(36):24819-24828. PubMed ID: 28868534
    [TBL] [Abstract][Full Text] [Related]  

  • 4. N⁻₃ azide anion confined inside finite-size carbon nanotubes.
    Battaglia S; Evangelisti S; Faginas-Lago N; Leininger T
    J Mol Model; 2017 Sep; 23(10):294. PubMed ID: 28951971
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Initial reactions of methyl-nitramine confined inside armchair (5,5) single-walled carbon nanotube.
    Wang L; Yi C; Zou H; Gan H; Xu J; Xu W
    J Mol Model; 2011 Nov; 17(11):2751-8. PubMed ID: 21279525
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhanced Organic Photocatalysis in Confined Flow through a Carbon Nitride Nanotube Membrane with Conversions in the Millisecond Regime.
    Zou Y; Xiao K; Qin Q; Shi JW; Heil T; Markushyna Y; Jiang L; Antonietti M; Savateev A
    ACS Nano; 2021 Apr; 15(4):6551-6561. PubMed ID: 33822587
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Detailed atomistic simulation of the nano-sorption and nano-diffusivity of water, tyrosol, vanillic acid, and p-coumaric acid in single wall carbon nanotubes.
    Anastassiou A; Karahaliou EK; Alexiadis O; Mavrantzas VG
    J Chem Phys; 2013 Oct; 139(16):164711. PubMed ID: 24182068
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Defect-induced chemisorption of nitrogen oxides on (10,0) single-walled carbon nanotubes: Insights from density functional calculations.
    Tang S; Cao Z
    J Chem Phys; 2009 Sep; 131(11):114706. PubMed ID: 19778141
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phase transition study of confined water molecules inside carbon nanotubes: hierarchical multiscale method from molecular dynamics simulation to ab initio calculation.
    Javadian S; Taghavi F; Yari F; Hashemianzadeh SM
    J Mol Graph Model; 2012 Sep; 38():40-9. PubMed ID: 23085156
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chirality- and diameter-dependent reactivity of NO2 on carbon nanotube walls.
    Seo K; Park KA; Kim C; Han S; Kim B; Lee YH
    J Am Chem Soc; 2005 Nov; 127(45):15724-9. PubMed ID: 16277513
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bromophenyl functionalization of carbon nanotubes: an ab initio study.
    Janssen JL; Beaudin J; Hine ND; Haynes PD; Côté M
    Nanotechnology; 2013 Sep; 24(37):375702. PubMed ID: 23974267
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Wettability and confinement size effects on stability of water conveying nanotubes.
    Shaat M; Javed U; Faroughi S
    Sci Rep; 2020 Oct; 10(1):17167. PubMed ID: 33051583
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cr(CO)3-activated Diels-Alder reaction on single-wall carbon nanotubes: a DFT investigation.
    Nunzi F; Sgamellotti A; De Angelis F
    Chemistry; 2009; 15(16):4182-9. PubMed ID: 19241427
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nitrogen-doped carbon nanotube as a potential metal-free catalyst for CO oxidation.
    Lin IH; Lu YH; Chen HT
    Phys Chem Chem Phys; 2016 Apr; 18(17):12093-100. PubMed ID: 27074831
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nanostructured water and carbon dioxide inside collapsing carbon nanotubes at high pressure.
    Cui W; Cerqueira TF; Botti S; Marques MA; San-Miguel A
    Phys Chem Chem Phys; 2016 Jul; 18(29):19926-32. PubMed ID: 27400409
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhanced ethanol production inside carbon-nanotube reactors containing catalytic particles.
    Pan X; Fan Z; Chen W; Ding Y; Luo H; Bao X
    Nat Mater; 2007 Jul; 6(7):507-11. PubMed ID: 17515914
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chiral graphene nanoribbon inside a carbon nanotube: ab initio study.
    Lebedeva IV; Popov AM; Knizhnik AA; Khlobystov AN; Potapkin BV
    Nanoscale; 2012 Aug; 4(15):4522-9. PubMed ID: 22696165
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Photophysics of individual single-walled carbon nanotubes.
    Carlson LJ; Krauss TD
    Acc Chem Res; 2008 Feb; 41(2):235-43. PubMed ID: 18281946
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Prediction of metallic nanotube reactivity for H
    Fajín JLC; Cordeiro MNDS; Gomes JRB
    Phys Chem Chem Phys; 2017 Jul; 19(29):19188-19195. PubMed ID: 28702530
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evaluating the effects of carbon nanoreactor diameter and internal structure on the pathways of the catalytic hydrosilylation reaction.
    Solomonsz WA; Rance GA; Khlobystov AN
    Small; 2014 May; 10(9):1866-72. PubMed ID: 24914447
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.