These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
347 related articles for article (PubMed ID: 28721580)
1. Gene expression profiles of the thermotolerant yeast Saccharomyces cerevisiae strain KKU-VN8 during high-temperature ethanol fermentation using sweet sorghum juice. Techaparin A; Thanonkeo P; Klanrit P Biotechnol Lett; 2017 Oct; 39(10):1521-1527. PubMed ID: 28721580 [TBL] [Abstract][Full Text] [Related]
2. High-temperature ethanol production using thermotolerant yeast newly isolated from Greater Mekong Subregion. Techaparin A; Thanonkeo P; Klanrit P Braz J Microbiol; 2017; 48(3):461-475. PubMed ID: 28365094 [TBL] [Abstract][Full Text] [Related]
3. Characterization and gene expression profiles of thermotolerant Saccharomyces cerevisiae isolates from Thai fruits. Auesukaree C; Koedrith P; Saenpayavai P; Asvarak T; Benjaphokee S; Sugiyama M; Kaneko Y; Harashima S; Boonchird C J Biosci Bioeng; 2012 Aug; 114(2):144-9. PubMed ID: 22579450 [TBL] [Abstract][Full Text] [Related]
4. Repeated ethanol production from sweet sorghum juice concentrated by membrane separation. Sasaki K; Tsuge Y; Sasaki D; Kawaguchi H; Sazuka T; Ogino C; Kondo A Bioresour Technol; 2015 Jun; 186():351-355. PubMed ID: 25857769 [TBL] [Abstract][Full Text] [Related]
5. Global gene expression analysis of Saccharomyces cerevisiae grown under redox potential-controlled very-high-gravity conditions. Liu CG; Lin YH; Bai FW Biotechnol J; 2013 Nov; 8(11):1332-40. PubMed ID: 23625881 [TBL] [Abstract][Full Text] [Related]
6. Enhanced thermotolerance for ethanol fermentation of Saccharomyces cerevisiae strain by overexpression of the gene coding for trehalose-6-phosphate synthase. An MZ; Tang YQ; Mitsumasu K; Liu ZS; Shigeru M; Kenji K Biotechnol Lett; 2011 Jul; 33(7):1367-74. PubMed ID: 21380777 [TBL] [Abstract][Full Text] [Related]
7. Kinetic models for batch ethanol production from sweet sorghum juice under normal and high gravity fermentations: Logistic and modified Gompertz models. Phukoetphim N; Salakkam A; Laopaiboon P; Laopaiboon L J Biotechnol; 2017 Feb; 243():69-75. PubMed ID: 27988216 [TBL] [Abstract][Full Text] [Related]
8. Changes of trehalose content and expression of relative genes during the bioethanol fermentation by Saccharomyces cerevisiae. Yi C; Wang F; Dong S; Li H Can J Microbiol; 2016 Oct; 62(10):827-835. PubMed ID: 27510429 [TBL] [Abstract][Full Text] [Related]
9. Investigating the underlying mechanism of Saccharomyces cerevisiae in response to ethanol stress employing RNA-seq analysis. Li R; Xiong G; Yuan S; Wu Z; Miao Y; Weng P World J Microbiol Biotechnol; 2017 Nov; 33(11):206. PubMed ID: 29101531 [TBL] [Abstract][Full Text] [Related]
10. Saccharomyces cerevisiae strains from traditional fermentations of Brazilian cachaça: trehalose metabolism, heat and ethanol resistance. Vianna CR; Silva CL; Neves MJ; Rosa CA Antonie Van Leeuwenhoek; 2008; 93(1-2):205-17. PubMed ID: 17701283 [TBL] [Abstract][Full Text] [Related]
11. Improved ethanol production of a newly isolated thermotolerant Saccharomyces cerevisiae strain after high-energy-pulse-electron beam. Zhang Q; Fu Y; Wang Y; Han J; Lv J; Wang S J Appl Microbiol; 2012 Feb; 112(2):280-8. PubMed ID: 22129196 [TBL] [Abstract][Full Text] [Related]
12. Repeated ethanol fermentation from membrane-concentrated sweet sorghum juice using the flocculating yeast Saccharomyces cerevisiae F118 strain. Wijaya H; Sasaki K; Kahar P; Yopi ; Kawaguchi H; Sazuka T; Ogino C; Prasetya B; Kondo A Bioresour Technol; 2018 Oct; 265():542-547. PubMed ID: 30017362 [TBL] [Abstract][Full Text] [Related]
13. Ethanol production from sweet sorghum by Saccharomyces cerevisiae DBKKUY-53 immobilized on alginate-loofah matrices. Nuanpeng S; Thanonkeo S; Klanrit P; Thanonkeo P Braz J Microbiol; 2018 Nov; 49 Suppl 1(Suppl 1):140-150. PubMed ID: 29588196 [TBL] [Abstract][Full Text] [Related]
14. Ethanol production from sweet sorghum juice using very high gravity technology: effects of carbon and nitrogen supplementations. Laopaiboon L; Nuanpeng S; Srinophakun P; Klanrit P; Laopaiboon P Bioresour Technol; 2009 Sep; 100(18):4176-82. PubMed ID: 19375908 [TBL] [Abstract][Full Text] [Related]
15. Superior thermotolerance of Saccharomyces cerevisiae for efficient bioethanol fermentation can be achieved by overexpression of RSP5 ubiquitin ligase. Shahsavarani H; Sugiyama M; Kaneko Y; Chuenchit B; Harashima S Biotechnol Adv; 2012; 30(6):1289-300. PubMed ID: 21930195 [TBL] [Abstract][Full Text] [Related]
16. Advances in mechanisms and modifications for rendering yeast thermotolerance. Gao L; Liu Y; Sun H; Li C; Zhao Z; Liu G J Biosci Bioeng; 2016 Jun; 121(6):599-606. PubMed ID: 26685013 [TBL] [Abstract][Full Text] [Related]
17. Increased ethanol production from sweet sorghum juice concentrated by a membrane separation process. Sasaki K; Tsuge Y; Sasaki D; Teramura H; Wakai S; Kawaguchi H; Sazuka T; Ogino C; Kondo A Bioresour Technol; 2014 Oct; 169():821-825. PubMed ID: 25123981 [TBL] [Abstract][Full Text] [Related]
18. Ethanol production from sweet sorghum juice in repeated-batch fermentation by Saccharomyces cerevisiae immobilized on corncob. Laopaiboon L; Laopaiboon P World J Microbiol Biotechnol; 2012 Feb; 28(2):559-66. PubMed ID: 22806851 [TBL] [Abstract][Full Text] [Related]
19. Acquisition of thermotolerant yeast Saccharomyces cerevisiae by breeding via stepwise adaptation. Satomura A; Katsuyama Y; Miura N; Kuroda K; Tomio A; Bamba T; Fukusaki E; Ueda M Biotechnol Prog; 2013; 29(5):1116-23. PubMed ID: 24115578 [TBL] [Abstract][Full Text] [Related]