These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
272 related articles for article (PubMed ID: 28721728)
1. Reduced Production of Higher Alcohols by Saccharomyces cerevisiae in Red Wine Fermentation by Simultaneously Overexpressing BAT1 and Deleting BAT2. Ma L; Huang S; Du L; Tang P; Xiao D J Agric Food Chem; 2017 Aug; 65(32):6936-6942. PubMed ID: 28721728 [TBL] [Abstract][Full Text] [Related]
2. Decreased production of higher alcohols by Saccharomyces cerevisiae for Chinese rice wine fermentation by deletion of Bat aminotransferases. Zhang CY; Qi YN; Ma HX; Li W; Dai LH; Xiao DG J Ind Microbiol Biotechnol; 2015 Apr; 42(4):617-25. PubMed ID: 25616436 [TBL] [Abstract][Full Text] [Related]
3. Reduced production of ethyl carbamate for wine fermentation by deleting CAR1 in Saccharomyces cerevisiae. Guo XW; Li YZ; Guo J; Wang Q; Huang SY; Chen YF; Du LP; Xiao DG J Ind Microbiol Biotechnol; 2016 May; 43(5):671-9. PubMed ID: 26831650 [TBL] [Abstract][Full Text] [Related]
4. Bat2p is essential in Saccharomyces cerevisiae for fusel alcohol production on the non-fermentable carbon source ethanol. Schoondermark-Stolk SA; Tabernero M; Chapman J; Ter Schure EG; Verrips CT; Verkleij AJ; Boonstra J FEMS Yeast Res; 2005 May; 5(8):757-66. PubMed ID: 15851104 [TBL] [Abstract][Full Text] [Related]
5. Reduced production of Ethyl Carbamate in wine by regulating the accumulation of arginine in Saccharomyces cerevisiae. Gao M; Li W; Fan L; Wei C; Yu S; Chen R; Ma L; Du L; Zhang H; Yang W J Biotechnol; 2024 Apr; 385():65-74. PubMed ID: 38503366 [TBL] [Abstract][Full Text] [Related]
6. Uncovering the role of branched-chain amino acid transaminases in Saccharomyces cerevisiae isobutanol biosynthesis. Hammer SK; Avalos JL Metab Eng; 2017 Nov; 44():302-312. PubMed ID: 29037781 [TBL] [Abstract][Full Text] [Related]
7. Comparing the Effects of Different Unsaturated Fatty Acids on Fermentation Performance of Liu PT; Duan CQ; Yan GL Molecules; 2019 Feb; 24(3):. PubMed ID: 30717212 [TBL] [Abstract][Full Text] [Related]
8. Improvement of Fusel Alcohol Production by Engineering of the Yeast Branched-Chain Amino Acid Aminotransaminase. Koonthongkaew J; Ploysongsri N; Toyokawa Y; Ruangpornvisuti V; Takagi H Appl Environ Microbiol; 2022 Jul; 88(13):e0055722. PubMed ID: 35699439 [TBL] [Abstract][Full Text] [Related]
9. The effect of increased branched-chain amino acid transaminase activity in yeast on the production of higher alcohols and on the flavour profiles of wine and distillates. Lilly M; Bauer FF; Styger G; Lambrechts MG; Pretorius IS FEMS Yeast Res; 2006 Aug; 6(5):726-43. PubMed ID: 16879424 [TBL] [Abstract][Full Text] [Related]
10. Decreased ethyl carbamate generation during Chinese rice wine fermentation by disruption of CAR1 in an industrial yeast strain. Wu D; Li X; Shen C; Lu J; Chen J; Xie G Int J Food Microbiol; 2014 Jun; 180():19-23. PubMed ID: 24769164 [TBL] [Abstract][Full Text] [Related]
11. Metabolic engineering of Saccharomyces cerevisiae using the CRISPR/Cas9 system to minimize ethyl carbamate accumulation during Chinese rice wine fermentation. Wu D; Xie W; Li X; Cai G; Lu J; Xie G Appl Microbiol Biotechnol; 2020 May; 104(10):4435-4444. PubMed ID: 32215703 [TBL] [Abstract][Full Text] [Related]
12. Production of low-alcohol Huangjiu with improved acidity and reduced levels of higher alcohols by fermentation with scarless ALD6 overexpression yeast. Zheng N; Jiang S; He Y; Chen Y; Zhang C; Guo X; Ma L; Xiao D Food Chem; 2020 Aug; 321():126691. PubMed ID: 32251922 [TBL] [Abstract][Full Text] [Related]
13. Diversification of Transcriptional Regulation Determines Subfunctionalization of Paralogous Branched Chain Aminotransferases in the Yeast González J; López G; Argueta S; Escalera-Fanjul X; El Hafidi M; Campero-Basaldua C; Strauss J; Riego-Ruiz L; González A Genetics; 2017 Nov; 207(3):975-991. PubMed ID: 28912343 [No Abstract] [Full Text] [Related]
14. Constitutive expression of the DUR1,2 gene in an industrial yeast strain to minimize ethyl carbamate production during Chinese rice wine fermentation. Wu D; Li X; Lu J; Chen J; Zhang L; Xie G FEMS Microbiol Lett; 2016 Jan; 363(1):fnv214. PubMed ID: 26538578 [TBL] [Abstract][Full Text] [Related]
15. Influence of Fermentation Temperature, Yeast Strain, and Grape Juice on the Aroma Chemistry and Sensory Profile of Sauvignon Blanc Wines. Deed RC; Fedrizzi B; Gardner RC J Agric Food Chem; 2017 Oct; 65(40):8902-8912. PubMed ID: 28922915 [TBL] [Abstract][Full Text] [Related]
16. Functional enhancement of Sake yeast strains to minimize the production of ethyl carbamate in Sake wine. Dahabieh MS; Husnik JI; Van Vuuren HJ J Appl Microbiol; 2010 Sep; 109(3):963-73. PubMed ID: 20408912 [TBL] [Abstract][Full Text] [Related]
17. Regulation of Saccharomyces cerevisiae genetic engineering on the production of acetate esters and higher alcohols during Chinese Baijiu fermentation. Li W; Wang JH; Zhang CY; Ma HX; Xiao DG J Ind Microbiol Biotechnol; 2017 Jun; 44(6):949-960. PubMed ID: 28176138 [TBL] [Abstract][Full Text] [Related]
18. The Effects of Catabolism Relationships of Leucine and Isoleucine with Zhang L; Zhang Y; Hu Z Genes (Basel); 2022 Jun; 13(7):. PubMed ID: 35885961 [TBL] [Abstract][Full Text] [Related]
19. Downregulation of Yang X; Zhang X; He X; Liu C; Zhao X; Han N J Microbiol Biotechnol; 2022 Jun; 32(6):761-767. PubMed ID: 35484971 [No Abstract] [Full Text] [Related]
20. Volatile composition and sensory properties of Shiraz wines as affected by nitrogen supplementation and yeast species: rationalizing nitrogen modulation of wine aroma. Ugliano M; Travis B; Francis IL; Henschke PA J Agric Food Chem; 2010 Dec; 58(23):12417-25. PubMed ID: 21067239 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]