These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 28721743)

  • 1. Responses of human hepatoma HepG2 cells to silver nanoparticles and polycyclic aromatic hydrocarbons.
    Filipak Neto F; Cardoso da Silva L; Liebel S; Voigt CL; Oliveira Ribeiro CA
    Toxicol Mech Methods; 2018 Jan; 28(1):69-78. PubMed ID: 28721743
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Toxicological interactions of silver nanoparticles and non-essential metals in human hepatocarcinoma cell line.
    Miranda RR; Bezerra AG; Oliveira Ribeiro CA; Randi MA; Voigt CL; Skytte L; Rasmussen KL; Kjeldsen F; Filipak Neto F
    Toxicol In Vitro; 2017 Apr; 40():134-143. PubMed ID: 28063819
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cytotoxicity and apoptosis induced by silver nanoparticles in human liver HepG2 cells in different dispersion media.
    Xue Y; Zhang T; Zhang B; Gong F; Huang Y; Tang M
    J Appl Toxicol; 2016 Mar; 36(3):352-60. PubMed ID: 26198703
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Silver nanoparticle inhibition of polycyclic aromatic hydrocarbons degradation by Mycobacterium species RJGII-135.
    Mueller-Spitz SR; Crawford KD
    Lett Appl Microbiol; 2014 Apr; 58(4):330-7. PubMed ID: 24286199
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phospholipids modifications in human hepatoma cell lines (HepG2) exposed to silver and iron oxide nanoparticles.
    Adeyemi JA; Sorgi CA; Machado ART; Ogunjimi AT; Gardinassi LGA; Nardini V; Faccioli LH; Antunes LMG; Barbosa F
    Arch Toxicol; 2020 Aug; 94(8):2625-2636. PubMed ID: 32474618
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cytotoxicity of subtoxic AgNP in human hepatoma cell line (HepG2) after long-term exposure.
    Nowrouzi A; Meghrazi K; Golmohammadi T; Golestani A; Ahmadian S; Shafiezadeh M; Shajary Z; Khaghani S; Amiri AN
    Iran Biomed J; 2010; 14(1-2):23-32. PubMed ID: 20683495
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biological effects of carbon black nanoparticles are changed by surface coating with polycyclic aromatic hydrocarbons.
    Lindner K; Ströbele M; Schlick S; Webering S; Jenckel A; Kopf J; Danov O; Sewald K; Buj C; Creutzenberg O; Tillmann T; Pohlmann G; Ernst H; Ziemann C; Hüttmann G; Heine H; Bockhorn H; Hansen T; König P; Fehrenbach H
    Part Fibre Toxicol; 2017 Mar; 14(1):8. PubMed ID: 28327162
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Co-exposure to silver nanoparticles and cadmium induce metabolic adaptation in HepG2 cells.
    Miranda RR; Gorshkov V; Korzeniowska B; Kempf SJ; Neto FF; Kjeldsen F
    Nanotoxicology; 2018 Sep; 12(7):781-795. PubMed ID: 29996704
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparison of in vitro toxicity of silver ions and silver nanoparticles on human hepatoma cells.
    Vrček IV; Žuntar I; Petlevski R; Pavičić I; Dutour Sikirić M; Ćurlin M; Goessler W
    Environ Toxicol; 2016 Jun; 31(6):679-92. PubMed ID: 25448069
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In vitro biosynthesis and genotoxicity bioassay of silver nanoparticles using plants.
    Panda KK; Achary VM; Krishnaveni R; Padhi BK; Sarangi SN; Sahu SN; Panda BB
    Toxicol In Vitro; 2011 Aug; 25(5):1097-105. PubMed ID: 21419840
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Oxidative damage induced by carcinogenic polycyclic aromatic hydrocarbons and organic extracts from urban air particulate matter.
    Hanzalova K; Rossner P; Sram RJ
    Mutat Res; 2010 Feb; 696(2):114-21. PubMed ID: 20079458
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Potential of biofluid components to modify silver nanoparticle toxicity.
    Murphy A; Sheehy K; Casey A; Chambers G
    J Appl Toxicol; 2015 Jun; 35(6):665-80. PubMed ID: 25752502
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Silver nanoparticles activate endoplasmic reticulum stress signaling pathway in cell and mouse models: The role in toxicity evaluation.
    Huo L; Chen R; Zhao L; Shi X; Bai R; Long D; Chen F; Zhao Y; Chang YZ; Chen C
    Biomaterials; 2015 Aug; 61():307-15. PubMed ID: 26024651
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Impact of surface functionalization on the uptake mechanism and toxicity effects of silver nanoparticles in HepG2 cells.
    Brkić Ahmed L; Milić M; Pongrac IM; Marjanović AM; Mlinarić H; Pavičić I; Gajović S; Vinković Vrček I
    Food Chem Toxicol; 2017 Sep; 107(Pt A):349-361. PubMed ID: 28694083
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Liposomal encapsulation of silver nanoparticles enhances cytotoxicity and causes induction of reactive oxygen species-independent apoptosis.
    Yusuf A; Brophy A; Gorey B; Casey A
    J Appl Toxicol; 2018 May; 38(5):616-627. PubMed ID: 29181855
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparison of silver nanoparticles stored under air or argon with respect to the induction of intracellular free radicals and toxic effects toward keratinocytes.
    Ahlberg S; Meinke MC; Werner L; Epple M; Diendorf J; Blume-Peytavi U; Lademann J; Vogt A; Rancan F
    Eur J Pharm Biopharm; 2014 Nov; 88(3):651-7. PubMed ID: 25108059
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development of HSPA1A promoter-driven luciferase reporter gene assays in human cells for assessing the oxidative damage induced by silver nanoparticles.
    Xin L; Wang J; Zhang LW; Che B; Dong G; Fan G; Cheng K
    Toxicol Appl Pharmacol; 2016 Aug; 304():9-17. PubMed ID: 27211842
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synthesis of glutathione as a central aspect of PAH toxicity in liver cells: A comparison between phenanthrene, Benzo[b]Fluoranthene and their mixtures.
    Branco V; Matos B; Mourato C; Diniz M; Carvalho C; Martins M
    Ecotoxicol Environ Saf; 2021 Jan; 208():111637. PubMed ID: 33396157
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tuning the inflammatory response to silver nanoparticles via quercetin in Caco-2 (co-)cultures as model of the human intestinal mucosa.
    Martirosyan A; Grintzalis K; Polet M; Laloux L; Schneider YJ
    Toxicol Lett; 2016 Jun; 253():36-45. PubMed ID: 27113704
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of a silver nanomaterial on cellular organelles and time course of oxidative stress in a fish cell line (PLHC-1).
    Bermejo-Nogales A; Fernández M; Fernández-Cruz ML; Navas JM
    Comp Biochem Physiol C Toxicol Pharmacol; 2016 Dec; 190():54-65. PubMed ID: 27544301
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.