BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

233 related articles for article (PubMed ID: 28721835)

  • 1. Parasites as prey: the effect of cercarial density and alternative prey on consumption of cercariae by four non-host species.
    Welsh JE; Liddell C; VAN DER Meer J; Thieltges DW
    Parasitology; 2017 Nov; 144(13):1775-1782. PubMed ID: 28721835
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Consumer and host body size effects on the removal of trematode cercariae by ambient communities.
    Welsh JE; Hempel A; Markovic M; van der Meer J; Thieltges DW
    Parasitology; 2019 Mar; 146(3):342-347. PubMed ID: 30318030
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cercarial Behavior Determines Risk of Predation.
    Selbach C; Rosenkranz M; Poulin R
    J Parasitol; 2019 Apr; 105(2):330-333. PubMed ID: 31021737
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Temperature does not influence functional response of amphipods consuming different trematode prey.
    Born-Torrijos A; Paterson RA; van Beest GS; Schwelm J; Vyhlídalová T; Henriksen EH; Knudsen R; Kristoffersen R; Amundsen PA; Soldánová M
    Parasitol Res; 2020 Dec; 119(12):4271-4276. PubMed ID: 32845358
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Non-host organisms impact transmission at two different life stages in a marine parasite.
    Vielma S; Lagrue C; Poulin R; Selbach C
    Parasitol Res; 2019 Jan; 118(1):111-117. PubMed ID: 30343421
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of predation risk on parasite transmission from first to second intermediate trematode hosts.
    Cornelius A; Buschbaum C; Khosravi M; Waser AM; Wegner KM; Thieltges DW
    J Anim Ecol; 2023 May; 92(5):991-1000. PubMed ID: 36994669
    [TBL] [Abstract][Full Text] [Related]  

  • 7. It's a worm-eat-worm world: Consumption of parasite free-living stages protects hosts and benefits predators.
    Hobart BK; Moss WE; McDevitt-Galles T; Stewart Merrill TE; Johnson PTJ
    J Anim Ecol; 2022 Jan; 91(1):35-45. PubMed ID: 34543447
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ribeiroia ondatrae cercariae are consumed by aquatic invertebrate predators.
    Schotthoefer AM; Labak KM; Beasley VR
    J Parasitol; 2007 Oct; 93(5):1240-3. PubMed ID: 18163369
    [TBL] [Abstract][Full Text] [Related]  

  • 9. How predator and parasite size interact to determine consumption of infectious stages.
    McDevitt-Galles T; Carpenter SA; Koprivnikar J; Johnson PTJ
    Oecologia; 2021 Nov; 197(3):551-564. PubMed ID: 34405300
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Trematode cercariae as prey for zooplankton: effect on fitness traits of predators.
    Mironova E; Gopko M; Pasternak A; Mikheev V; Taskinen J
    Parasitology; 2019 Jan; 146(1):105-111. PubMed ID: 29898802
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cercarial swimming performance and its potential role as a key variable of trematode transmission.
    Morley NJ
    Parasitology; 2020 Oct; 147(12):1369-1374. PubMed ID: 32660659
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Free-living parasite infectious stages promote zooplankton abundance under the risk of predation.
    Schultz B; Koprivnikar J
    Oecologia; 2019 Oct; 191(2):411-420. PubMed ID: 31501977
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The contributions of a trematode parasite infectious stage to carbon cycling in a model freshwater system.
    Schultz B; Koprivnikar J
    Parasitol Res; 2021 May; 120(5):1743-1754. PubMed ID: 33792814
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Unintended facilitation between marine consumers generates enhanced mortality for their shared prey.
    Fodrie FJ; Kenworthy MD; Powers SP
    Ecology; 2008 Dec; 89(12):3268-74. PubMed ID: 19137933
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Thermodynamics of cercarial development and emergence in trematodes.
    Morley NJ; Lewis JW
    Parasitology; 2013 Sep; 140(10):1211-24. PubMed ID: 23253747
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Prey size structure diminishes cascading effects by increasing interference competition and predation among prey.
    Geraldii NR
    Ecology; 2015 Sep; 96(9):2533-43. PubMed ID: 26594709
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Global warming and temperature-mediated increases in cercarial emergence in trematode parasites.
    Poulin R
    Parasitology; 2006 Jan; 132(Pt 1):143-51. PubMed ID: 16393363
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cercarial behaviour alters the consumer functional response of three-spined sticklebacks.
    Born-Torrijos A; Paterson RA; van Beest GS; Vyhlídalová T; Henriksen EH; Knudsen R; Kristoffersen R; Amundsen PA; Soldánová M
    J Anim Ecol; 2021 Apr; 90(4):978-988. PubMed ID: 33481253
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chronobiology of trematode cercarial emergence: from data recovery to epidemiological, ecological and evolutionary implications.
    Théron A
    Adv Parasitol; 2015 Apr; 88():123-64. PubMed ID: 25911367
    [TBL] [Abstract][Full Text] [Related]  

  • 20. It's a predator-eat-parasite world: how characteristics of predator, parasite and environment affect consumption.
    Orlofske SA; Jadin RC; Johnson PT
    Oecologia; 2015 Jun; 178(2):537-47. PubMed ID: 25648648
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.