These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 28721942)

  • 21. Lithium-doped zinc oxide nanowires-polymer composite for high performance flexible piezoelectric nanogenerator.
    Shin SH; Kim YH; Lee MH; Jung JY; Seol JH; Nah J
    ACS Nano; 2014 Oct; 8(10):10844-50. PubMed ID: 25265473
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Implementation of ferroelectric materials in photocatalytic and photoelectrochemical water splitting.
    Li Y; Li J; Yang W; Wang X
    Nanoscale Horiz; 2020 Jul; 5(8):1174-1187. PubMed ID: 32613990
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A three-dimensional interconnected hierarchical FeOOH/TiO₂/ZnO nanostructural photoanode for enhancing the performance of photoelectrochemical water oxidation.
    Li Z; Feng S; Liu S; Li X; Wang L; Lu W
    Nanoscale; 2015 Dec; 7(45):19178-83. PubMed ID: 26523803
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Uniform Doping of Titanium in Hematite Nanorods for Efficient Photoelectrochemical Water Splitting.
    Wang D; Chen H; Chang G; Lin X; Zhang Y; Aldalbahi A; Peng C; Wang J; Fan C
    ACS Appl Mater Interfaces; 2015 Jul; 7(25):14072-8. PubMed ID: 26052922
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Roles of cocatalysts in photocatalysis and photoelectrocatalysis.
    Yang J; Wang D; Han H; Li C
    Acc Chem Res; 2013 Aug; 46(8):1900-9. PubMed ID: 23530781
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A novel fabrication methodology for sulfur-doped ZnO nanorods as an active photoanode for improved water oxidation in visible-light regime.
    Khan A; Ahmed MI; Adam A; Azad AM; Qamar M
    Nanotechnology; 2017 Feb; 28(5):055602. PubMed ID: 28029100
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Au nanoparticle-modified MoS2 nanosheet-based photoelectrochemical cells for water splitting.
    Yin Z; Chen B; Bosman M; Cao X; Chen J; Zheng B; Zhang H
    Small; 2014 Sep; 10(17):3537-43. PubMed ID: 24610819
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Photoelectrochemical Water Splitting with p-Type Metal Oxide Semiconductor Photocathodes.
    Jang YJ; Lee JS
    ChemSusChem; 2019 May; 12(9):1835-1845. PubMed ID: 30614648
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Controllably Interfacing with Ferroelectric Layer: A Strategy for Enhancing Water Oxidation on Silicon by Surface Polarization.
    Cui W; Xia Z; Wu S; Chen F; Li Y; Sun B
    ACS Appl Mater Interfaces; 2015 Nov; 7(46):25601-7. PubMed ID: 25844486
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Cobalt-phosphate-assisted photoelectrochemical water oxidation by arrays of molybdenum-doped zinc oxide nanorods.
    Lin YG; Hsu YK; Chen YC; Lee BW; Hwang JS; Chen LC; Chen KH
    ChemSusChem; 2014 Sep; 7(9):2748-54. PubMed ID: 25044962
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Enhanced Bulk and Interfacial Charge Transfer Dynamics for Efficient Photoelectrochemical Water Splitting: The Case of Hematite Nanorod Arrays.
    Wang J; Feng B; Su J; Guo L
    ACS Appl Mater Interfaces; 2016 Sep; 8(35):23143-50. PubMed ID: 27508404
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Epitaxial growth of ZnO Nanodisks with large exposed polar facets on nanowire arrays for promoting photoelectrochemical water splitting.
    Chen H; Wei Z; Yan K; Bai Y; Zhu Z; Zhang T; Yang S
    Small; 2014 Nov; 10(22):4760-9. PubMed ID: 24990800
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Modeling and Simulations in Photoelectrochemical Water Oxidation: From Single Level to Multiscale Modeling.
    Zhang X; Bieberle-Hütter A
    ChemSusChem; 2016 Jun; 9(11):1223-42. PubMed ID: 27219662
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Enhanced photoelectrochemical water oxidation via atomic layer deposition of TiO2 on fluorine-doped tin oxide nanoparticle films.
    Cordova IA; Peng Q; Ferrall IL; Rieth AJ; Hoertz PG; Glass JT
    Nanoscale; 2015 May; 7(18):8584-92. PubMed ID: 25899449
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Novel ZnO/Fe₂O₃ Core-Shell Nanowires for Photoelectrochemical Water Splitting.
    Hsu YK; Chen YC; Lin YG
    ACS Appl Mater Interfaces; 2015 Jul; 7(25):14157-62. PubMed ID: 26053274
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Direct Mapping of Band Positions in Doped and Undoped Hematite during Photoelectrochemical Water Splitting.
    Shavorskiy A; Ye X; Karslıoğlu O; Poletayev AD; Hartl M; Zegkinoglou I; Trotochaud L; Nemšák S; Schneider CM; Crumlin EJ; Axnanda S; Liu Z; Ross PN; Chueh W; Bluhm H
    J Phys Chem Lett; 2017 Nov; 8(22):5579-5586. PubMed ID: 29083905
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Recent Progress in the Surface Modification of Photoelectrodes toward Efficient and Stable Overall Water Splitting.
    Kaneko H; Minegishi T; Domen K
    Chemistry; 2018 Apr; 24(22):5697-5706. PubMed ID: 29057534
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Visible light driven overall water splitting using cocatalyst/BiVO4 photoanode with minimized bias.
    Ding C; Shi J; Wang D; Wang Z; Wang N; Liu G; Xiong F; Li C
    Phys Chem Chem Phys; 2013 Apr; 15(13):4589-95. PubMed ID: 23423143
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Facet cutting and hydrogenation of In(2)O(3) nanowires for enhanced photoelectrochemical water splitting.
    Meng M; Wu X; Zhu X; Zhu X; Chu PK
    ACS Appl Mater Interfaces; 2014 Mar; 6(6):4081-8. PubMed ID: 24568166
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Iron-doping-enhanced photoelectrochemical water splitting performance of nanostructured WO3: a combined experimental and theoretical study.
    Zhang T; Zhu Z; Chen H; Bai Y; Xiao S; Zheng X; Xue Q; Yang S
    Nanoscale; 2015 Feb; 7(7):2933-40. PubMed ID: 25587830
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.