BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 28721951)

  • 1. Recording characteristics of electrical impedance myography needle electrodes.
    Kwon H; Rutkove SB; Sanchez B
    Physiol Meas; 2017 Aug; 38(9):1748-1765. PubMed ID: 28721951
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sensitivity distribution simulations of surface electrode configurations for electrical impedance myography.
    Rutkove SB; Pacheck A; Sanchez B
    Muscle Nerve; 2017 Nov; 56(5):887-895. PubMed ID: 28056494
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modeling and Reproducibility of Twin Concentric Electrical Impedance Myography.
    Cardoner MMM; Kwon H; Pulido HVG; Nagy J; Rutkove S; Sanchez B
    IEEE Trans Biomed Eng; 2021 Oct; 68(10):3068-3077. PubMed ID: 33661730
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Recording characteristics of electrical impedance-electromyography needle electrodes.
    Kwon H; Di Cristina JF; Rutkove SB; Sanchez B
    Physiol Meas; 2018 May; 39(5):055005. PubMed ID: 29616985
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Guidelines to electrode positioning for human and animal electrical impedance myography research.
    Sanchez B; Pacheck A; Rutkove SB
    Sci Rep; 2016 Sep; 6():32615. PubMed ID: 27585740
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Assessment of alterations in the electrical impedance of muscle after experimental nerve injury via finite-element analysis.
    Wang LL; Ahad M; McEwan A; Li J; Jafarpoor M; Rutkove SB
    IEEE Trans Biomed Eng; 2011 Jun; 58(6):1585-91. PubMed ID: 21224171
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Finite element analysis of electrical impedance myography in the rat hind limb.
    Ahad MA; Rutkove SB
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():630-3. PubMed ID: 19964481
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electrical impedance myography method of measuring anisotropic tongue tissue.
    Luo X; Shi J; Llobet AM; Rutkove SB; Sanchez B
    Physiol Meas; 2023 May; 44(5):. PubMed ID: 37172607
    [No Abstract]   [Full Text] [Related]  

  • 9. Electrical impedance myography: transitioning from human to animal studies.
    Nie R; Sunmonu NA; Chin AB; Lee KS; Rutkove SB
    Clin Neurophysiol; 2006 Aug; 117(8):1844-9. PubMed ID: 16807097
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Invasive electrical impedance myography at different levels of contraction of gastrocnemius muscle of rat.
    Coutinho ABB; Jotta B; Werneck-de-Castro JP; Pino AV; Souza MN
    Rev Sci Instrum; 2020 Aug; 91(8):084103. PubMed ID: 32872900
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modeling and simulation of needle electrical impedance myography in nonhomogeneous isotropic skeletal muscle.
    Luo X; Wang S; Sanchez B
    IEEE J Electromagn RF Microw Med Biol; 2022 Mar; 6(1):103-110. PubMed ID: 35434441
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Separation of Subcutaneous Fat From Muscle in Surface Electrical Impedance Myography Measurements Using Model Component Analysis.
    Kwon H; Malik WQ; Rutkove SB; Sanchez B
    IEEE Trans Biomed Eng; 2019 Feb; 66(2):354-364. PubMed ID: 29993468
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Finite Element Analysis and Circuit Modelling Methodology for Studying Electrical Impedance Myography of Human Limbs.
    Schrunder AF; Rodriguez S; Rusu A
    IEEE Trans Biomed Eng; 2022 Jan; 69(1):244-255. PubMed ID: 34161236
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optimizing electrode configuration for electrical impedance measurements of muscle via the finite element method.
    Jafarpoor M; Li J; White JK; Rutkove SB
    IEEE Trans Biomed Eng; 2013 May; 60(5):1446-52. PubMed ID: 23314763
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Intra- and inter-rater reliability of electrical impedance myography using adhesive electrodes in healthy volunteers.
    Martinez-Gonzalez M; Montilla-Herrador J; García-Vidal JA; Escolar-Reina P; Gacto-Sánchez M; Medina-Mirapeix F
    J Electromyogr Kinesiol; 2020 Dec; 55():102456. PubMed ID: 32905888
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microneedle Electrode Array for Electrical Impedance Myography to Characterize Neurogenic Myopathy.
    Li Z; Li Y; Liu M; Cui L; Yu Y
    Ann Biomed Eng; 2016 May; 44(5):1566-75. PubMed ID: 26407702
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Effect of Subcutaneous Fat on Electrical Impedance Myography: Electrode Configuration and Multi-Frequency Analyses.
    Li L; Li X; Hu H; Shin H; Zhou P
    PLoS One; 2016; 11(5):e0156154. PubMed ID: 27227876
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An improved electrical impedance myography (EIM) tongue array for use in clinical trials.
    McIlduff C; Yim S; Pacheck A; Geisbush T; Mijailovic A; Rutkove SB
    Clin Neurophysiol; 2016 Jan; 127(1):932-935. PubMed ID: 26242815
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modelling and analysis of electrical impedance myography of the lateral tongue.
    Schooling CN; Jamie Healey T; McDonough HE; French SJ; McDermott CJ; Shaw PJ; Kadirkamanathan V; Alix JJP
    Physiol Meas; 2021 Jan; 41(12):125008. PubMed ID: 33207324
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Performing In Vivo and Ex Vivo Electrical Impedance Myography in Rodents.
    Mortreux M; Nagy JA; Zhong H; Sung DM; Concepcion HA; Leitner M; Dalle Pazze L; Rutkove SB
    J Vis Exp; 2022 Jun; (184):. PubMed ID: 35758704
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.