These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
625 related articles for article (PubMed ID: 28722012)
1. Type III CRISPR-Cas systems produce cyclic oligoadenylate second messengers. Niewoehner O; Garcia-Doval C; Rostøl JT; Berk C; Schwede F; Bigler L; Hall J; Marraffini LA; Jinek M Nature; 2017 Aug; 548(7669):543-548. PubMed ID: 28722012 [TBL] [Abstract][Full Text] [Related]
2. The ribonuclease activity of Csm6 is required for anti-plasmid immunity by Type III-A CRISPR-Cas systems. Foster K; Kalter J; Woodside W; Terns RM; Terns MP RNA Biol; 2019 Apr; 16(4):449-460. PubMed ID: 29995577 [TBL] [Abstract][Full Text] [Related]
3. Activation and self-inactivation mechanisms of the cyclic oligoadenylate-dependent CRISPR ribonuclease Csm6. Garcia-Doval C; Schwede F; Berk C; Rostøl JT; Niewoehner O; Tejero O; Hall J; Marraffini LA; Jinek M Nat Commun; 2020 Mar; 11(1):1596. PubMed ID: 32221291 [TBL] [Abstract][Full Text] [Related]
4. A Type III CRISPR Ancillary Ribonuclease Degrades Its Cyclic Oligoadenylate Activator. Athukoralage JS; Graham S; Grüschow S; Rouillon C; White MF J Mol Biol; 2019 Jul; 431(15):2894-2899. PubMed ID: 31071326 [TBL] [Abstract][Full Text] [Related]
5. Activation of Csm6 ribonuclease by cyclic nucleotide binding: in an emergency, twist to open. McQuarrie S; Athukoralage JS; McMahon SA; Graham S; Ackermann K; Bode BE; White MF; Gloster TM Nucleic Acids Res; 2023 Oct; 51(19):10590-10605. PubMed ID: 37747760 [TBL] [Abstract][Full Text] [Related]
6. Regulation of cyclic oligoadenylate synthesis by the Nasef M; Muffly MC; Beckman AB; Rowe SJ; Walker FC; Hatoum-Aslan A; Dunkle JA RNA; 2019 Aug; 25(8):948-962. PubMed ID: 31076459 [TBL] [Abstract][Full Text] [Related]
7. CRISPR-Cas III-A Csm6 CARF Domain Is a Ring Nuclease Triggering Stepwise cA Jia N; Jones R; Yang G; Ouerfelli O; Patel DJ Mol Cell; 2019 Sep; 75(5):944-956.e6. PubMed ID: 31326273 [TBL] [Abstract][Full Text] [Related]
8. Structural basis for the endoribonuclease activity of the type III-A CRISPR-associated protein Csm6. Niewoehner O; Jinek M RNA; 2016 Mar; 22(3):318-29. PubMed ID: 26763118 [TBL] [Abstract][Full Text] [Related]
9. A Type III-B Cmr effector complex catalyzes the synthesis of cyclic oligoadenylate second messengers by cooperative substrate binding. Han W; Stella S; Zhang Y; Guo T; Sulek K; Peng-Lundgren L; Montoya G; She Q Nucleic Acids Res; 2018 Nov; 46(19):10319-10330. PubMed ID: 30239876 [TBL] [Abstract][Full Text] [Related]
10. Molecular mechanism of allosteric activation of the CRISPR ribonuclease Csm6 by cyclic tetra-adenylate. Du L; Zhu Q; Lin Z EMBO J; 2024 Jan; 43(2):304-315. PubMed ID: 38177499 [TBL] [Abstract][Full Text] [Related]
11. Csx3 is a cyclic oligonucleotide phosphodiesterase associated with type III CRISPR-Cas that degrades the second messenger cA Brown S; Gauvin CC; Charbonneau AA; Burman N; Lawrence CM J Biol Chem; 2020 Oct; 295(44):14963-14972. PubMed ID: 32826317 [TBL] [Abstract][Full Text] [Related]
12. Investigation of the cyclic oligoadenylate signaling pathway of type III CRISPR systems. Rouillon C; Athukoralage JS; Graham S; Grüschow S; White MF Methods Enzymol; 2019; 616():191-218. PubMed ID: 30691643 [TBL] [Abstract][Full Text] [Related]
13. Tetramerisation of the CRISPR ring nuclease Crn3/Csx3 facilitates cyclic oligoadenylate cleavage. Athukoralage JS; McQuarrie S; Grüschow S; Graham S; Gloster TM; White MF Elife; 2020 Jun; 9():. PubMed ID: 32597755 [TBL] [Abstract][Full Text] [Related]
14. Type III-A CRISPR-associated protein Csm6 degrades cyclic hexa-adenylate activator using both CARF and HEPN domains. Smalakyte D; Kazlauskiene M; F Havelund J; Rukšėnaitė A; Rimaite A; Tamulaitiene G; Færgeman NJ; Tamulaitis G; Siksnys V Nucleic Acids Res; 2020 Sep; 48(16):9204-9217. PubMed ID: 32766806 [TBL] [Abstract][Full Text] [Related]
15. Enzymatic properties of CARF-domain proteins in Ding J; Schuergers N; Baehre H; Wilde A Front Microbiol; 2022; 13():1046388. PubMed ID: 36419420 [TBL] [Abstract][Full Text] [Related]
16. Regulation of the RNA and DNA nuclease activities required for Pyrococcus furiosus Type III-B CRISPR-Cas immunity. Foster K; Grüschow S; Bailey S; White MF; Terns MP Nucleic Acids Res; 2020 May; 48(8):4418-4434. PubMed ID: 32198888 [TBL] [Abstract][Full Text] [Related]
17. A cyclic oligonucleotide signaling pathway in type III CRISPR-Cas systems. Kazlauskiene M; Kostiuk G; Venclovas Č; Tamulaitis G; Siksnys V Science; 2017 Aug; 357(6351):605-609. PubMed ID: 28663439 [TBL] [Abstract][Full Text] [Related]
18. The CRISPR ancillary effector Can2 is a dual-specificity nuclease potentiating type III CRISPR defence. Zhu W; McQuarrie S; Grüschow S; McMahon SA; Graham S; Gloster TM; White MF Nucleic Acids Res; 2021 Mar; 49(5):2777-2789. PubMed ID: 33590098 [TBL] [Abstract][Full Text] [Related]
19. Discovery of Oligonucleotide Signaling Mediated by CRISPR-Associated Polymerases Solves Two Puzzles but Leaves an Enigma. Koonin EV; Makarova KS ACS Chem Biol; 2018 Feb; 13(2):309-312. PubMed ID: 28937734 [TBL] [Abstract][Full Text] [Related]
20. If You'd Like to Stop a Type III CRISPR Ribonuclease, Then You Should Put a Ring (Nuclease) on It. Mo CY; Marraffini LA Mol Cell; 2018 Nov; 72(4):608-609. PubMed ID: 30444997 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]