BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 28722117)

  • 1. A single-probe heat pulse method for estimating sap velocity in trees.
    López-Bernal Á; Testi L; Villalobos FJ
    New Phytol; 2017 Oct; 216(1):321-329. PubMed ID: 28722117
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A statistical method for estimating wood thermal diffusivity and probe geometry using in situ heat response curves from sap flow measurements.
    Chen X; Miller GR; Rubin Y; Baldocchi DD
    Tree Physiol; 2012 Dec; 32(12):1458-70. PubMed ID: 23135737
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sapflow+: a four-needle heat-pulse sap flow sensor enabling nonempirical sap flux density and water content measurements.
    Vandegehuchte MW; Steppe K
    New Phytol; 2012 Oct; 196(1):306-317. PubMed ID: 22816502
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A model of heat transfer in sapwood and implications for sap flux density measurements using thermal dissipation probes.
    Wullschleger SD; Childs KW; King AW; Hanson PJ
    Tree Physiol; 2011 Jun; 31(6):669-79. PubMed ID: 21743059
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The importance of conduction versus convection in heat pulse sap flow methods.
    Forster MA
    Tree Physiol; 2020 May; 40(5):683-694. PubMed ID: 32031660
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Estimating water use by sugar maple trees: considerations when using heat-pulse methods in trees with deep functional sapwood.
    Pausch RC; Grote EE; Dawson TE
    Tree Physiol; 2000 Mar; 20(4):217-227. PubMed ID: 12651458
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Use of the correct heat conduction-convection equation as basis for heat-pulse sap flow methods in anisotropic wood.
    Vandegehuchte MW; Steppe K
    J Exp Bot; 2012 May; 63(8):2833-9. PubMed ID: 22407648
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Application of three heat pulse technique-based methods to determine the stem sap flow].
    Wang S; Fan J
    Ying Yong Sheng Tai Xue Bao; 2015 Aug; 26(8):2244-52. PubMed ID: 26685585
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A comparison of heat pulse and deuterium tracing techniques for estimating sap flow in Eucalyptus grandis trees.
    Kalma SJ; Thorburn PJ; Dunn GM
    Tree Physiol; 1998 Oct; 18(10):697-705. PubMed ID: 12651419
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Influence of stem temperature changes on heat pulse sap flux density measurements.
    Vandegehuchte MW; Burgess SS; Downey A; Steppe K
    Tree Physiol; 2015 Apr; 35(4):346-53. PubMed ID: 25145698
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transient thermal dissipation method for xylem sap flow measurement: implementation with a single probe.
    Do FC; Isarangkool Na Ayutthaya S; Rocheteau A
    Tree Physiol; 2011 Apr; 31(4):369-80. PubMed ID: 21498407
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An improved heat pulse method to measure low and reverse rates of sap flow in woody plants.
    Burgess SS; Adams MA; Turner NC; Beverly CR; Ong CK; Khan AA; Bleby TM
    Tree Physiol; 2001 Jun; 21(9):589-98. PubMed ID: 11390303
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Radial variation in sap velocity as a function of stem diameter and sapwood thickness in yellow-poplar trees.
    Wullschleger SD; King AW
    Tree Physiol; 2000 Apr; 20(8):511-518. PubMed ID: 12651431
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Calibration of sap flow estimated by the compensation heat pulse method in olive, plum and orange trees: relationships with xylem anatomy.
    Fernández JE; Durán PJ; Palomo MJ; Diaz-Espejo A; Chamorro V; Girón IF
    Tree Physiol; 2006 Jun; 26(6):719-28. PubMed ID: 16510387
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Azimuthal and radial variations in sap flux density and effects on stand-scale transpiration estimates in a Japanese cedar forest.
    Shinohara Y; Tsuruta K; Ogura A; Noto F; Komatsu H; Otsuki K; Maruyama T
    Tree Physiol; 2013 May; 33(5):550-8. PubMed ID: 23640874
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A double-ratio method to measure fast, slow and reverse sap flows.
    Deng Z; Vice HK; Gilbert ME; Adams MA; Buckley TN
    Tree Physiol; 2021 Dec; 41(12):2438-2453. PubMed ID: 34100073
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An alternative method to estimate zero flow temperature differences for Granier's thermal dissipation technique.
    Regalado CM; Ritter A
    Tree Physiol; 2007 Aug; 27(8):1093-102. PubMed ID: 17472936
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sap flow monitoring of two Australian native tree species in a suburban setting: Implications for tree selection and management.
    Sun X; Li J; Cameron D; Moore G
    Plant Sci; 2022 Apr; 317():111194. PubMed ID: 35193743
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Improving sap flux density measurements by correctly determining thermal diffusivity, differentiating between bound and unbound water.
    Vandegehuchte MW; Steppe K
    Tree Physiol; 2012 Jul; 32(7):930-42. PubMed ID: 22543477
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Using the compensated heat pulse method to monitor trends in stem water content in standing trees.
    López-Bernal Á; Testi L; Villalobos FJ
    Tree Physiol; 2012 Nov; 32(11):1420-9. PubMed ID: 23095949
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.