These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

226 related articles for article (PubMed ID: 28722138)

  • 1. A Red Blood Cell Model to Estimate the Hemolysis Fingerprint of Cardiovascular Devices.
    Toninato R; Fadda G; Susin FM
    Artif Organs; 2018 Jan; 42(1):58-67. PubMed ID: 28722138
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A strain-based model for mechanical hemolysis based on a coarse-grained red blood cell model.
    Ezzeldin HM; de Tullio MD; Vanella M; Solares SD; Balaras E
    Ann Biomed Eng; 2015 Jun; 43(6):1398-409. PubMed ID: 25691396
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Analysis of red blood cell deformation under fast shear flow for better estimation of hemolysis.
    Nakamura M; Bessho S; Wada S
    Int J Numer Method Biomed Eng; 2014 Jan; 30(1):42-54. PubMed ID: 23949912
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Numerical investigation on the effect of bileaflet mechanical heart valve's implantation tilting angle and aortic root geometry on intermittent regurgitation and platelet activation.
    Abbas SS; Nasif MS; Al-Waked R; Meor Said MA
    Artif Organs; 2020 Feb; 44(2):E20-E39. PubMed ID: 31378963
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hemolysis Related to Turbulent Eddy Size Distributions Using Comparisons of Experiments to Computations.
    Ozturk M; O'Rear EA; Papavassiliou DV
    Artif Organs; 2015 Dec; 39(12):E227-39. PubMed ID: 26412190
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The effect of turbulent viscous shear stress on red blood cell hemolysis.
    Yen JH; Chen SF; Chern MK; Lu PC
    J Artif Organs; 2014 Jun; 17(2):178-85. PubMed ID: 24619800
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Integrated strategy for in vitro characterization of a bileaflet mechanical aortic valve.
    Susin FM; Espa S; Toninato R; Fortini S; Querzoli G
    Biomed Eng Online; 2017 Feb; 16(1):29. PubMed ID: 28209171
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Flow-Induced Damage to Blood Cells in Aortic Valve Stenosis.
    Vahidkhah K; Cordasco D; Abbasi M; Ge L; Tseng E; Bagchi P; Azadani AN
    Ann Biomed Eng; 2016 Sep; 44(9):2724-36. PubMed ID: 27048168
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Numerical analysis on the hemodynamics and leaflet dynamics in a bileaflet mechanical heart valve using a fluid-structure interaction method.
    Choi CR; Kim CN
    ASAIO J; 2009; 55(5):428-37. PubMed ID: 19730001
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Numerical analysis of the hemodynamic performance of bileaflet mechanical heart valves at different implantation angles.
    Kuan YH; Nguyen VT; Kabinejadian F; Su B; Kim S; Yoganathan AP; Leo HL
    J Heart Valve Dis; 2014 Sep; 23(5):642-50. PubMed ID: 25799715
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multiscale modeling of hemolysis during microfiltration.
    Nikfar M; Razizadeh M; Paul R; Liu Y
    Microfluid Nanofluidics; 2020 May; 24(5):. PubMed ID: 33235552
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Leakage flow at mechanical heart valve prostheses: improved washout or increased blood damage?
    Steegers A; Paul R; Reul H; Rau G
    J Heart Valve Dis; 1999 May; 8(3):312-23. PubMed ID: 10399668
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of hemodynamic forces induced by mechanical heart valves: Reynolds vs. viscous stresses.
    Ge L; Dasi LP; Sotiropoulos F; Yoganathan AP
    Ann Biomed Eng; 2008 Feb; 36(2):276-97. PubMed ID: 18049902
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A numerical investigation of blood damage in the hinge area of aortic bileaflet mechanical heart valves during the leakage phase.
    Yun BM; Wu J; Simon HA; Arjunon S; Sotiropoulos F; Aidun CK; Yoganathan AP
    Ann Biomed Eng; 2012 Jul; 40(7):1468-85. PubMed ID: 22215278
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Large scale simulation of red blood cell aggregation in shear flows.
    Xu D; Kaliviotis E; Munjiza A; Avital E; Ji C; Williams J
    J Biomech; 2013 Jul; 46(11):1810-7. PubMed ID: 23809770
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A biocompatible flow chamber to study the hemodynamic performance of prosthetic heart valves.
    Yin W; Ngwe EC; Rubenstein DA
    ASAIO J; 2012; 58(5):470-80. PubMed ID: 22951894
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Computational fluid dynamics simulation of transcatheter aortic valve degeneration.
    Dwyer HA; Matthews PB; Azadani A; Jaussaud N; Ge L; Guy TS; Tseng EE
    Interact Cardiovasc Thorac Surg; 2009 Aug; 9(2):301-8. PubMed ID: 19414489
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Prediction of mechanical hemolysis in medical devices via a Lagrangian strain-based multiscale model.
    Nikfar M; Razizadeh M; Zhang J; Paul R; Wu ZJ; Liu Y
    Artif Organs; 2020 Aug; 44(8):E348-E368. PubMed ID: 32017130
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Repetitive Supra-Physiological Shear Stress Impairs Red Blood Cell Deformability and Induces Hemolysis.
    Horobin JT; Sabapathy S; Simmonds MJ
    Artif Organs; 2017 Nov; 41(11):1017-1025. PubMed ID: 28543744
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Estimation of shear stress-related blood damage in heart valve prostheses--in vitro comparison of 25 aortic valves.
    Giersiepen M; Wurzinger LJ; Opitz R; Reul H
    Int J Artif Organs; 1990 May; 13(5):300-6. PubMed ID: 2365485
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.