These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 28722421)

  • 1. Capillary Rise: Validity of the Dynamic Contact Angle Models.
    Wu P; Nikolov AD; Wasan DT
    Langmuir; 2017 Aug; 33(32):7862-7872. PubMed ID: 28722421
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Capillary dynamics driven by molecular self-layering.
    Wu P; Nikolov A; Wasan D
    Adv Colloid Interface Sci; 2017 May; 243():114-120. PubMed ID: 28213985
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Surfactant solutions and porous substrates: spreading and imbibition.
    Starov VM
    Adv Colloid Interface Sci; 2004 Nov; 111(1-2):3-27. PubMed ID: 15571660
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spreading of liquid drops over porous substrates.
    Starov VM; Zhdanov SA; Kosvintsev SR; Sobolev VD; Velarde MG
    Adv Colloid Interface Sci; 2003 Jul; 104():123-58. PubMed ID: 12818493
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Capillary rise with velocity-dependent dynamic contact angle.
    Popescu MN; Ralston J; Sedev R
    Langmuir; 2008 Nov; 24(21):12710-6. PubMed ID: 18834162
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Experimental investigation of dynamic contact angle and capillary rise in tubes with circular and noncircular cross sections.
    Heshmati M; Piri M
    Langmuir; 2014 Dec; 30(47):14151-62. PubMed ID: 25323811
    [TBL] [Abstract][Full Text] [Related]  

  • 7. On the dynamic contact angle of capillary-driven microflows in open channels.
    Tokihiro JC; McManamen AM; Phana DN; Thongpang S; Blake TD; Theberge AB; Berthier J
    bioRxiv; 2024 Mar; ():. PubMed ID: 37163094
    [TBL] [Abstract][Full Text] [Related]  

  • 8. On the Dynamic Contact Angle of Capillary-Driven Microflows in Open Channels.
    Tokihiro JC; McManamen AM; Phan DN; Thongpang S; Blake TD; Theberge AB; Berthier J
    Langmuir; 2024 Apr; 40(13):7215-7224. PubMed ID: 38511962
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Direct Measurement of Contact Angle Change in Capillary Rise.
    Kim H; Lim JH; Lee K; Choi SQ
    Langmuir; 2020 Dec; 36(48):14597-14606. PubMed ID: 33237788
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Capillary rise dynamics of aqueous glycerol solutions in glass capillaries: a critical examination of the Washburn equation.
    O'Loughlin M; Wilk K; Priest C; Ralston J; Popescu MN
    J Colloid Interface Sci; 2013 Dec; 411():257-64. PubMed ID: 24041546
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rise of the main meniscus in rectangular capillaries: Experiments and modeling.
    Wu P; Zhang H; Nikolov A; Wasan D
    J Colloid Interface Sci; 2016 Jan; 461():195-202. PubMed ID: 26402778
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A two-angle model of dynamic wetting in microscale capillaries under low capillary numbers with experiments.
    Lei D; Lin M; Li Y; Jiang W
    J Colloid Interface Sci; 2018 Jun; 520():91-100. PubMed ID: 29529465
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Capillary rise of polydimethylsiloxane around a poly(ethylene terephthalate) fiber versus viscosity: Existence of a sharp transition in the dynamic wetting behavior.
    Zhang Y; Moins S; Coulembier O; Seveno D; De Coninck J
    J Colloid Interface Sci; 2019 Feb; 536():499-506. PubMed ID: 30384055
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Analytical approach for the Lucas-Washburn equation.
    Hamraoui A; Nylander T
    J Colloid Interface Sci; 2002 Jun; 250(2):415-21. PubMed ID: 16290679
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dynamic wetting and spreading and the role of topography.
    McHale G; Newton MI; Shirtcliffe NJ
    J Phys Condens Matter; 2009 Nov; 21(46):464122. PubMed ID: 21715886
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Capillary rise of a non-Newtonian power law liquid: impact of the fluid rheology and dynamic contact angle.
    Digilov RM
    Langmuir; 2008 Dec; 24(23):13663-7. PubMed ID: 18986181
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Wetting dynamics of polydimethylsiloxane mixtures on a poly(ethylene terephthalate) fiber.
    Zhang Y; Vandaele A; Seveno D; De Coninck J
    J Colloid Interface Sci; 2018 Sep; 525():243-250. PubMed ID: 29705594
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of the meniscus contact angle during early regimes of spontaneous imbibition in nanochannels.
    Karna NK; Oyarzua E; Walther JH; Zambrano HA
    Phys Chem Chem Phys; 2016 Nov; 18(47):31997-32001. PubMed ID: 27858022
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Surface Tension and Dynamic Contact Angle of Water in Thin Quartz Capillaries.
    Sobolev VD; Churaev NV; Velarde MG; Zorin ZM
    J Colloid Interface Sci; 2000 Feb; 222(1):51-54. PubMed ID: 10655124
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Roles of energy dissipation and asymmetric wettability in spontaneous imbibition dynamics in a nanochannel.
    A H; Yang Z; Hu R; Chen YF
    J Colloid Interface Sci; 2022 Feb; 607(Pt 2):1023-1035. PubMed ID: 34571292
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.