These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 28723191)

  • 1. Highly Enriched, Controllable, Continuous Aerosol Sampling Using Inertial Microfluidics and Its Application to Real-Time Detection of Airborne Bacteria.
    Choi J; Hong SC; Kim W; Jung JH
    ACS Sens; 2017 Apr; 2(4):513-521. PubMed ID: 28723191
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Continuous aerosol size separator using inertial microfluidics and its application to airborne bacteria and viruses.
    Hong SC; Kang JS; Lee JE; Kim SS; Jung JH
    Lab Chip; 2015 Apr; 15(8):1889-97. PubMed ID: 25714231
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fully integrated optofluidic SERS platform for real-time and continuous characterization of airborne microorganisms.
    Choi J; Lee J; Jung JH
    Biosens Bioelectron; 2020 Dec; 169():112611. PubMed ID: 32977088
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Continuous and real-time bioaerosol monitoring by combined aerosol-to-hydrosol sampling and ATP bioluminescence assay.
    Park JW; Kim HR; Hwang J
    Anal Chim Acta; 2016 Oct; 941():101-107. PubMed ID: 27692374
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Continuous Sampling of Aerosolized Particles Using Stratified Two-Phase Microfluidics.
    Ahasan K; Schnoebelen NJ; Shrotriya P; Kingston TA
    ACS Sens; 2024 Jun; 9(6):2915-2924. PubMed ID: 38848499
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development of an automated wet-cyclone system for rapid, continuous and enriched bioaerosol sampling and its application to real-time detection.
    Cho YS; Hong SC; Choi J; Jung JH
    Sens Actuators B Chem; 2019 Apr; 284():525-533. PubMed ID: 32288254
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization of reaerosolization from impingers in an effort to improve airborne virus sampling.
    Riemenschneider L; Woo MH; Wu CY; Lundgren D; Wander J; Lee JH; Li HW; Heimbuch B
    J Appl Microbiol; 2010 Jan; 108(1):315-24. PubMed ID: 20002911
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evaluation of a high-volume portable bioaerosol sampler in laboratory and field environments.
    An HR; Mainelis G; Yao M
    Indoor Air; 2004 Dec; 14(6):385-93. PubMed ID: 15500631
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Design and Evaluation of an Aerodynamic Focusing Micro-Well Aerosol Collector.
    He J; Novosselov IV
    Aerosol Sci Technol; 2017; 51(9):1016-1026. PubMed ID: 30739977
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sampling port for real-time analysis of bioaerosol in whole body exposure system for animal aerosol model development.
    Saini D; Hopkins GW; Chen CJ; Seay SA; Click EM; Lee S; Hartings JM; Frothingham R
    J Pharmacol Toxicol Methods; 2011; 63(2):143-9. PubMed ID: 20849964
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Size-resolved fluorescent biological aerosol particle concentrations and occupant emissions in a university classroom.
    Bhangar S; Huffman JA; Nazaroff WW
    Indoor Air; 2014 Dec; 24(6):604-17. PubMed ID: 24654966
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enriched Aerosol-to-Hydrosol Transfer for Rapid and Continuous Monitoring of Bioaerosols.
    Heo KJ; Ko HS; Jeong SB; Kim SB; Jung JH
    Nano Lett; 2021 Jan; 21(2):1017-1024. PubMed ID: 33444028
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Miniature PCR based portable bioaerosol monitor development.
    Agranovski IE; Usachev EV; Agranovski E; Usacheva OV
    J Appl Microbiol; 2017 Jan; 122(1):129-138. PubMed ID: 27709774
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Collection of three bacterial aerosols by respirator and surgical mask filters under varying conditions of flow and relative humidity.
    McCullough NV; Brosseau LM; Vesley D
    Ann Occup Hyg; 1997 Dec; 41(6):677-90. PubMed ID: 9375526
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microfluidic Air Sampler for Highly Efficient Bacterial Aerosol Collection and Identification.
    Bian X; Lan Y; Wang B; Zhang YS; Liu B; Yang P; Zhang W; Qiao L
    Anal Chem; 2016 Dec; 88(23):11504-11512. PubMed ID: 27934096
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bioaerosol sampling by a personal rotating cup sampler CIP 10-M.
    Görner P; Fabriès JF; Duquenne P; Witschger O; Wrobel R
    J Environ Monit; 2006 Jan; 8(1):43-8. PubMed ID: 16395458
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Research advances in microfluidic collection and detection of virus, bacterial, and fungal bioaerosols.
    Zhou X; Liu X; Zhao H; Guo G; Jiang X; Liu S; Sun X; Yang H
    Mikrochim Acta; 2024 Feb; 191(3):132. PubMed ID: 38351367
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Inertial microfluidics for continuous particle separation in spiral microchannels.
    Kuntaegowdanahalli SS; Bhagat AA; Kumar G; Papautsky I
    Lab Chip; 2009 Oct; 9(20):2973-80. PubMed ID: 19789752
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dielectrophoretic separation of airborne microbes and dust particles using a microfluidic channel for real-time bioaerosol monitoring.
    Moon HS; Nam YW; Park JC; Jung HI
    Environ Sci Technol; 2009 Aug; 43(15):5857-63. PubMed ID: 19731688
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Gentle Sampling of Submicrometer Airborne Virus Particles using a Personal Electrostatic Particle Concentrator.
    Hong S; Bhardwaj J; Han CH; Jang J
    Environ Sci Technol; 2016 Nov; 50(22):12365-12372. PubMed ID: 27786464
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.