BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 28723243)

  • 21. Mild water stress-induced priming enhance tolerance to Rosellinia necatrix in susceptible avocado rootstocks.
    Martínez-Ferri E; Moreno-Ortega G; van den Berg N; Pliego C
    BMC Plant Biol; 2019 Oct; 19(1):458. PubMed ID: 31664901
    [TBL] [Abstract][Full Text] [Related]  

  • 22. GFP sheds light on the infection process of avocado roots by Rosellinia necatrix.
    Pliego C; Kanematsu S; Ruano-Rosa D; de Vicente A; López-Herrera C; Cazorla FM; Ramos C
    Fungal Genet Biol; 2009 Feb; 46(2):137-45. PubMed ID: 19100853
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Biocontrol bacteria selected by a direct plant protection strategy against avocado white root rot show antagonism as a prevalent trait.
    González-Sánchez MÁ; Pérez-Jiménez RM; Pliego C; Ramos C; de Vicente A; Cazorla FM
    J Appl Microbiol; 2010 Jul; 109(1):65-78. PubMed ID: 19961545
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Isolation and characterization of antagonistic Bacillus subtilis strains from the avocado rhizoplane displaying biocontrol activity.
    Cazorla FM; Romero D; Pérez-García A; Lugtenberg BJ; Vicente Ad; Bloemberg G
    J Appl Microbiol; 2007 Nov; 103(5):1950-9. PubMed ID: 17953605
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Comparing Avocado, Swamp Bay, and Camphortree as Hosts of Raffaelea lauricola Using a Green Fluorescent Protein (GFP)-Labeled Strain of the Pathogen.
    Campbell AS; Ploetz RC; Rollins JA
    Phytopathology; 2017 Jan; 107(1):70-74. PubMed ID: 27602540
    [TBL] [Abstract][Full Text] [Related]  

  • 26.
    Wang Q; Chen S
    Plant Dis; 2020 Feb; 104(2):493-509. PubMed ID: 31790643
    [No Abstract]   [Full Text] [Related]  

  • 27. Impact of motility and chemotaxis features of the rhizobacterium Pseudomonas chlororaphis PCL1606 on its biocontrol of avocado white root rot.
    Polonio Á; Vida C; de Vicente A; Cazorla FM
    Int Microbiol; 2017 Jun; 20(2):95-104. PubMed ID: 28617527
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Multi-Locus Phylogeny and Taxonomy of the Fungal Complex Associated With Rusty Root Rot of
    Guan YM; Ma YY; Jin Q; Wang QX; Liu N; Fu YP; Zhang YY; Li Y
    Front Microbiol; 2020; 11():618942. PubMed ID: 33391250
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Taxonomy and multi-locus phylogeny of cylindrocarpon-like species associated with diseased roots of grapevine and other fruit and nut crops in California.
    Lawrence DP; Nouri MT; Trouillas FP
    Fungal Syst Evol; 2019 Dec; 4():59-75. PubMed ID: 32467907
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Prevalence, Identity, Pathogenicity, and Infection Dynamics of Botryosphaeriaceae Causing Avocado Branch Canker in California.
    Avenot HF; Vega D; Arpaia ML; Michailides TJ
    Phytopathology; 2023 Jun; 113(6):1034-1047. PubMed ID: 36510362
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Generation of composite Persea americana (Mill.) (avocado) plants: A proof-of-concept-study.
    Prabhu SA; Ndlovu B; Engelbrecht J; van den Berg N
    PLoS One; 2017; 12(10):e0185896. PubMed ID: 29053757
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Novel approaches and methods for quantifying Phytophthora cinnamomi in avocado tree roots.
    Masikane S; Jolliffe J; Swart L; McLeod A
    FEMS Microbiol Lett; 2019 Aug; 366(16):. PubMed ID: 31550364
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A moderate level of hypovirulence conferred by a hypovirus in the avocado white root rot fungus, Rosellinia necatrix.
    Arjona-López JM; Telengech P; Suzuki N; López-Herrera CJ
    Fungal Biol; 2021 Jan; 125(1):69-76. PubMed ID: 33317778
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Selection for biocontrol bacteria antagonistic toward Rosellinia necatrix by enrichment of competitive avocado root tip colonizers.
    Pliego C; Cazorla FM; González-Sánchez MA; Pérez-Jiménez RM; de Vicente A; Ramos C
    Res Microbiol; 2007 Jun; 158(5):463-70. PubMed ID: 17467245
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Analyses of Multilocus Sequences and Morphological Features Reveal
    Qiao M; Jing T; Wan Y; Yu Z
    Plant Dis; 2024 Feb; 108(2):382-397. PubMed ID: 37552163
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effects of Silicon Amendment on Soilborne and Fruit Diseases of Avocado.
    Dann EK; Le DP
    Plants (Basel); 2017 Oct; 6(4):. PubMed ID: 29053639
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Analysis of genetic and virulence diversity of Cylindrocarpon liriodendri and C. macrodidymum associated with black foot disease of grapevine.
    Alaniz S; Armengol J; León M; García-Jiménez J; Abad-Campos P
    Mycol Res; 2009 Jan; 113(Pt 1):16-23. PubMed ID: 18672056
    [TBL] [Abstract][Full Text] [Related]  

  • 38. First Report of
    Longone V; Escoriaza G; Paolinelli M; Gramaje D
    Plant Dis; 2022 Jun; ():PDIS10212346PDN. PubMed ID: 35100835
    [No Abstract]   [Full Text] [Related]  

  • 39. Impact of Laurel Wilt, Caused by Raffaelea lauricola, on Leaf Gas Exchange and Xylem Sap Flow in Avocado, Persea americana.
    Ploetz RC; Schaffer B; Vargas AI; Konkol JL; Salvatierra J; Wideman R
    Phytopathology; 2015 Apr; 105(4):433-40. PubMed ID: 25496301
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Phytophthora Root Rot Modifies the Composition of the Avocado Rhizosphere Microbiome and Increases the Abundance of Opportunistic Fungal Pathogens.
    Solís-García IA; Ceballos-Luna O; Cortazar-Murillo EM; Desgarennes D; Garay-Serrano E; Patiño-Conde V; Guevara-Avendaño E; Méndez-Bravo A; Reverchon F
    Front Microbiol; 2020; 11():574110. PubMed ID: 33510714
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.