BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

260 related articles for article (PubMed ID: 28724509)

  • 41. How valid are wearable physical activity trackers for measuring steps?
    An HS; Jones GC; Kang SK; Welk GJ; Lee JM
    Eur J Sport Sci; 2017 Apr; 17(3):360-368. PubMed ID: 27912681
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Comparison of a Wearable Tracker with Actigraph for Classifying Physical Activity Intensity and Heart Rate in Children.
    Kang S; Kim Y; Byun W; Suk J; Lee JM
    Int J Environ Res Public Health; 2019 Jul; 16(15):. PubMed ID: 31349667
    [No Abstract]   [Full Text] [Related]  

  • 43. Validity of wearable activity monitors for tracking steps and estimating energy expenditure during a graded maximal treadmill test.
    Kendall B; Bellovary B; Gothe NP
    J Sports Sci; 2019 Jan; 37(1):42-49. PubMed ID: 29863968
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Validity, Reliability and Sensitivity to Change of Three Consumer-Grade Activity Trackers in Controlled and Free-Living Conditions among Older Adults.
    Kastelic K; Dobnik M; Löfler S; Hofer C; Šarabon N
    Sensors (Basel); 2021 Sep; 21(18):. PubMed ID: 34577457
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Intensity classification accuracy of accelerometer-measured physical activities in Chinese children and youth.
    Zhu Z; Chen P; Zhuang J
    Res Q Exerc Sport; 2013 Dec; 84 Suppl 2():S4-11. PubMed ID: 24527562
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Ankle Accelerometry for Assessing Physical Activity Among Adolescent Girls: Threshold Determination, Validity, Reliability, and Feasibility.
    Hager ER; Treuth MS; Gormely C; Epps L; Snitker S; Black MM
    Res Q Exerc Sport; 2015; 86(4):397-405. PubMed ID: 26288333
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Comparability and feasibility of wrist- and hip-worn accelerometers in free-living adolescents.
    Scott JJ; Rowlands AV; Cliff DP; Morgan PJ; Plotnikoff RC; Lubans DR
    J Sci Med Sport; 2017 Dec; 20(12):1101-1106. PubMed ID: 28501418
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Factors associated with validity of consumer-oriented wearable physical activity trackers: a meta-analysis.
    Leung W; Case L; Jung J; Yun J
    J Med Eng Technol; 2021 Apr; 45(3):223-236. PubMed ID: 33750250
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Calibration of the GENEA accelerometer for assessment of physical activity intensity in children.
    Phillips LR; Parfitt G; Rowlands AV
    J Sci Med Sport; 2013 Mar; 16(2):124-8. PubMed ID: 22770768
    [TBL] [Abstract][Full Text] [Related]  

  • 50. How Accurate Is Your Activity Tracker? A Comparative Study of Step Counts in Low-Intensity Physical Activities.
    Alinia P; Cain C; Fallahzadeh R; Shahrokni A; Cook D; Ghasemzadeh H
    JMIR Mhealth Uhealth; 2017 Aug; 5(8):e106. PubMed ID: 28801304
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Development and validation of energy expenditure prediction models based on GT3X accelerometer data in 5- to 9-year-old children.
    Jimmy G; Seiler R; Maeder U
    J Phys Act Health; 2013 Sep; 10(7):1057-67. PubMed ID: 23136371
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Reliability and Validity of Objective Measures of Physical Activity in Youth With Cerebral Palsy Who Are Ambulatory.
    O'Neil ME; Fragala-Pinkham M; Lennon N; George A; Forman J; Trost SG
    Phys Ther; 2016 Jan; 96(1):37-45. PubMed ID: 26089043
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Criterion Validity of Competing Accelerometry-Based Activity Monitoring Devices.
    Kim Y; Welk GJ
    Med Sci Sports Exerc; 2015 Nov; 47(11):2456-63. PubMed ID: 25910051
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Validity of Accelerometry to Measure Physical Activity Intensity in Children With an Acquired Brain Injury.
    Baque E; Sakzewski L; Trost SG; Boyd RN; Barber L
    Pediatr Phys Ther; 2017 Oct; 29(4):322-329. PubMed ID: 28953176
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Free-living Evaluation of Laboratory-based Activity Classifiers in Preschoolers.
    Ahmadi MN; Brookes D; Chowdhury A; Pavey T; Trost SG
    Med Sci Sports Exerc; 2020 May; 52(5):1227-1234. PubMed ID: 31764460
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Validity of Wrist-Worn Activity Trackers for Estimating VO
    Passler S; Bohrer J; Blöchinger L; Senner V
    Int J Environ Res Public Health; 2019 Aug; 16(17):. PubMed ID: 31443347
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Validity of hip-mounted uniaxial accelerometry with heart-rate monitoring vs. triaxial accelerometry in the assessment of free-living energy expenditure in young children: the IDEFICS Validation Study.
    Ojiambo R; Konstabel K; Veidebaum T; Reilly J; Verbestel V; Huybrechts I; Sioen I; Casajús JA; Moreno LA; Vicente-Rodriguez G; Bammann K; Tubic BM; Marild S; Westerterp K; Pitsiladis YP;
    J Appl Physiol (1985); 2012 Nov; 113(10):1530-6. PubMed ID: 22995396
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Standardizing Analytic Methods and Reporting in Activity Monitor Validation Studies.
    Welk GJ; Bai Y; Lee JM; Godino J; Saint-Maurice PF; Carr L
    Med Sci Sports Exerc; 2019 Aug; 51(8):1767-1780. PubMed ID: 30913159
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Relative validity of 3 accelerometer models for estimating energy expenditure during light activity.
    Wetten AA; Batterham M; Tan SY; Tapsell L
    J Phys Act Health; 2014 Mar; 11(3):638-47. PubMed ID: 23417054
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Concurrent Validity of Wearable Activity Trackers Under Free-Living Conditions.
    Brooke SM; An HS; Kang SK; Noble JM; Berg KE; Lee JM
    J Strength Cond Res; 2017 Apr; 31(4):1097-1106. PubMed ID: 27465631
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.