These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

264 related articles for article (PubMed ID: 28724626)

  • 1. Aerodynamic modelling of a Cretaceous bird reveals thermal soaring capabilities during early avian evolution.
    Serrano FJ; Chiappe LM
    J R Soc Interface; 2017 Jul; 14(132):. PubMed ID: 28724626
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The gliding speed of migrating birds: slow and safe or fast and risky?
    Horvitz N; Sapir N; Liechti F; Avissar R; Mahrer I; Nathan R
    Ecol Lett; 2014 Jun; 17(6):670-9. PubMed ID: 24641086
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Flight aerodynamics in enantiornithines: Information from a new Chinese Early Cretaceous bird.
    Liu D; Chiappe LM; Serrano F; Habib M; Zhang Y; Meng Q
    PLoS One; 2017; 12(10):e0184637. PubMed ID: 29020077
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Exploring bird aerodynamics using radio-controlled models.
    Hoey RG
    Bioinspir Biomim; 2010 Dec; 5(4):045008. PubMed ID: 21098962
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The aerodynamics of Argentavis, the world's largest flying bird from the Miocene of Argentina.
    Chatterjee S; Templin RJ; Campbell KE
    Proc Natl Acad Sci U S A; 2007 Jul; 104(30):12398-403. PubMed ID: 17609382
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Insight into the evolution of avian flight from a new clade of Early Cretaceous ornithurines from China and the morphology of Yixianornis grabaui.
    Clarke JA; Zhou Z; Zhang F
    J Anat; 2006 Mar; 208(3):287-308. PubMed ID: 16533313
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Origin of flight: Could 'four-winged' dinosaurs fly?
    Padian K; Dial KP
    Nature; 2005 Nov; 438(7066):E3; discussion E3-4. PubMed ID: 16292258
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Artificial evolution of the morphology and kinematics in a flapping-wing mini-UAV.
    de Margerie E; Mouret JB; Doncieux S; Meyer JA
    Bioinspir Biomim; 2007 Dec; 2(4):65-82. PubMed ID: 18037730
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A new basal bird from China with implications for morphological diversity in early birds.
    Wang M; Wang X; Wang Y; Zhou Z
    Sci Rep; 2016 Jan; 6():19700. PubMed ID: 26806355
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Flight modes in migrating European bee-eaters: heart rate may indicate low metabolic rate during soaring and gliding.
    Sapir N; Wikelski M; McCue MD; Pinshow B; Nathan R
    PLoS One; 2010 Nov; 5(11):e13956. PubMed ID: 21085655
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Soft-tissue and dermal arrangement in the wing of an Early Cretaceous bird: Implications for the evolution of avian flight.
    Navalón G; Marugán-Lobón J; Chiappe LM; Luis Sanz J; Buscalioni ÁD
    Sci Rep; 2015 Oct; 5():14864. PubMed ID: 26440221
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Use of multiple modes of flight subsidy by a soaring terrestrial bird, the golden eagle Aquila chrysaetos, when on migration.
    Katzner TE; Turk PJ; Duerr AE; Miller TA; Lanzone MJ; Cooper JL; Brandes D; Tremblay JA; Lemaître J
    J R Soc Interface; 2015 Nov; 12(112):. PubMed ID: 26538556
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Thermal soaring flight of birds and unmanned aerial vehicles.
    Akos Z; Nagy M; Leven S; Vicsek T
    Bioinspir Biomim; 2010 Dec; 5(4):045003. PubMed ID: 21098957
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bone laminarity in the avian forelimb skeleton and its relationship to flight mode: testing functional interpretations.
    Simons EL; O'connor PM
    Anat Rec (Hoboken); 2012 Mar; 295(3):386-96. PubMed ID: 22241723
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The primary feather lengths of early birds with respect to avian wing shape evolution.
    Wang X; Nudds RL; Dyke GJ
    J Evol Biol; 2011 Jun; 24(6):1226-31. PubMed ID: 21418115
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Anatomy and Flight Performance of the Early Enantiornithine Bird Protopteryx fengningensis: Information from New Specimens of the Early Cretaceous Huajiying Formation of China.
    Chiappe LM; Di L; Serrano FJ; Yuguang Z; Meng Q
    Anat Rec (Hoboken); 2020 Apr; 303(4):716-731. PubMed ID: 31825173
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Forelimb posture in dinosaurs and the evolution of the avian flapping flight-stroke.
    Nudds RL; Dyke GJ
    Evolution; 2009 Apr; 63(4):994-1002. PubMed ID: 19154383
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The birds from Las Hoyas.
    Sanz JL; Ortega F
    Sci Prog; 2002; 85(Pt 2):113-30. PubMed ID: 12216277
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Largest bird from the Early Cretaceous and its implications for the earliest avian ecological diversification.
    Zhou Z; Zhang F
    Naturwissenschaften; 2002 Jan; 89(1):34-8. PubMed ID: 12008971
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A new Lower Cretaceous bird from China and tooth reduction in early avian evolution.
    Zhou Z; Li FZ
    Proc Biol Sci; 2010 Jan; 277(1679):219-27. PubMed ID: 19586952
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.