BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

208 related articles for article (PubMed ID: 28724750)

  • 1. Disruption of a Structurally Important Extracellular Element in the Glycine Receptor Leads to Decreased Synaptic Integration and Signaling Resulting in Severe Startle Disease.
    Schaefer N; Berger A; van Brederode J; Zheng F; Zhang Y; Leacock S; Littau L; Jablonka S; Malhotra S; Topf M; Winter F; Davydova D; Lynch JW; Paige CJ; Alzheimer C; Harvey RJ; Villmann C
    J Neurosci; 2017 Aug; 37(33):7948-7961. PubMed ID: 28724750
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The GlyR Extracellular β8-β9 Loop - A Functional Determinant of Agonist Potency.
    Janzen D; Schaefer N; Delto C; Schindelin H; Villmann C
    Front Mol Neurosci; 2017; 10():322. PubMed ID: 29062270
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Functional Consequences of the Postnatal Switch From Neonatal to Mutant Adult Glycine Receptor α1 Subunits in the
    Schaefer N; Zheng F; van Brederode J; Berger A; Leacock S; Hirata H; Paige CJ; Harvey RJ; Alzheimer C; Villmann C
    Front Mol Neurosci; 2018; 11():167. PubMed ID: 29910711
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Missense Mutation A384P Associated with Human Hyperekplexia Reveals a Desensitization Site of Glycine Receptors.
    Wang CH; Hernandez CC; Wu J; Zhou N; Hsu HY; Shen ML; Wang YC; Macdonald RL; Wu DC
    J Neurosci; 2018 Mar; 38(11):2818-2831. PubMed ID: 29440552
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Novel Glycine Receptor Variant with Startle Disease Affects Syndapin I and Glycinergic Inhibition.
    Langlhofer G; Schaefer N; Maric HM; Keramidas A; Zhang Y; Baumann P; Blum R; Breitinger U; Strømgaard K; Schlosser A; Kessels MM; Koch D; Qualmann B; Breitinger HG; Lynch JW; Villmann C
    J Neurosci; 2020 Jun; 40(25):4954-4969. PubMed ID: 32354853
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The startle disease mutation α1S270T predicts shortening of glycinergic synaptic currents.
    Wu Z; Lape R; Jopp-Saile L; O'Callaghan BJ; Greiner T; Sivilotti LG
    J Physiol; 2020 Aug; 598(16):3417-3438. PubMed ID: 32445491
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Murine startle mutant Nmf11 affects the structural stability of the glycine receptor and increases deactivation.
    Wilkins ME; Caley A; Gielen MC; Harvey RJ; Smart TG
    J Physiol; 2016 Jul; 594(13):3589-607. PubMed ID: 27028707
    [TBL] [Abstract][Full Text] [Related]  

  • 8. β Subunit M2-M3 loop conformational changes are uncoupled from α1 β glycine receptor channel gating: implications for human hereditary hyperekplexia.
    Shan Q; Han L; Lynch JW
    PLoS One; 2011; 6(11):e28105. PubMed ID: 22132222
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of two mutations, M287L and Q266I, in the α1 glycine receptor subunit that modify sensitivity to alcohols.
    Borghese CM; Blednov YA; Quan Y; Iyer SV; Xiong W; Mihic SJ; Zhang L; Lovinger DM; Trudell JR; Homanics GE; Harris RA
    J Pharmacol Exp Ther; 2012 Feb; 340(2):304-16. PubMed ID: 22037201
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The GLRA1 missense mutation W170S associates lack of Zn2+ potentiation with human hyperekplexia.
    Zhou N; Wang CH; Zhang S; Wu DC
    J Neurosci; 2013 Nov; 33(45):17675-81. PubMed ID: 24198360
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Role of the Glycine Receptor β Subunit in Synaptic Localization and Pathogenicity in Severe Startle Disease.
    Wiessler AL; Hasenmüller AS; Fuhl I; Mille C; Cortes Campo O; Reinhard N; Schenk J; Heinze KG; Schaefer N; Specht CG; Villmann C
    J Neurosci; 2024 Jan; 44(2):. PubMed ID: 37963764
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A proline-rich motif in the large intracellular loop of the glycine receptor α1 subunit interacts with the Pleckstrin homology domain of collybistin.
    Breitinger U; Weinländer K; Pechmann Y; Langlhofer G; Enz R; Becker CM; Sticht H; Kneussel M; Villmann C; Breitinger HG
    J Adv Res; 2021 Mar; 29():95-106. PubMed ID: 33842008
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Disease-specific human glycine receptor alpha1 subunit causes hyperekplexia phenotype and impaired glycine- and GABA(A)-receptor transmission in transgenic mice.
    Becker L; von Wegerer J; Schenkel J; Zeilhofer HU; Swandulla D; Weiher H
    J Neurosci; 2002 Apr; 22(7):2505-12. PubMed ID: 11923415
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Startle Disease Mutation E103K Impairs Activation of Human Homomeric α1 Glycine Receptors by Disrupting an Intersubunit Salt Bridge across the Agonist Binding Site.
    Safar F; Hurdiss E; Erotocritou M; Greiner T; Lape R; Irvine MW; Fang G; Jane D; Yu R; Dämgen MA; Biggin PC; Sivilotti LG
    J Biol Chem; 2017 Mar; 292(12):5031-5042. PubMed ID: 28174298
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Presynaptic glycine receptors as a potential therapeutic target for hyperekplexia disease.
    Xiong W; Chen SR; He L; Cheng K; Zhao YL; Chen H; Li DP; Homanics GE; Peever J; Rice KC; Wu LG; Pan HL; Zhang L
    Nat Neurosci; 2014 Feb; 17(2):232-9. PubMed ID: 24390226
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Distinct phenotypes in zebrafish models of human startle disease.
    Ganser LR; Yan Q; James VM; Kozol R; Topf M; Harvey RJ; Dallman JE
    Neurobiol Dis; 2013 Dec; 60():139-51. PubMed ID: 24029548
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Probing glycine receptor stoichiometry in superficial dorsal horn neurones using the spasmodic mouse.
    Graham BA; Tadros MA; Schofield PR; Callister RJ
    J Physiol; 2011 May; 589(Pt 10):2459-74. PubMed ID: 21486794
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Distinct physiological mechanisms underlie altered glycinergic synaptic transmission in the murine mutants spastic, spasmodic, and oscillator.
    Graham BA; Schofield PR; Sah P; Margrie TW; Callister RJ
    J Neurosci; 2006 May; 26(18):4880-90. PubMed ID: 16672662
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Disturbed neuronal ER-Golgi sorting of unassembled glycine receptors suggests altered subcellular processing is a cause of human hyperekplexia.
    Schaefer N; Kluck CJ; Price KL; Meiselbach H; Vornberger N; Schwarzinger S; Hartmann S; Langlhofer G; Schulz S; Schlegel N; Brockmann K; Lynch B; Becker CM; Lummis SC; Villmann C
    J Neurosci; 2015 Jan; 35(1):422-37. PubMed ID: 25568133
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hyperekplexia phenotype of glycine receptor alpha1 subunit mutant mice identifies Zn(2+) as an essential endogenous modulator of glycinergic neurotransmission.
    Hirzel K; Müller U; Latal AT; Hülsmann S; Grudzinska J; Seeliger MW; Betz H; Laube B
    Neuron; 2006 Nov; 52(4):679-90. PubMed ID: 17114051
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.