These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

358 related articles for article (PubMed ID: 28724783)

  • 1. Intra- and intersegmental influences among central pattern generating networks in the walking system of the stick insect.
    Mantziaris C; Bockemühl T; Holmes P; Borgmann A; Daun S; Büschges A
    J Neurophysiol; 2017 Oct; 118(4):2296-2310. PubMed ID: 28724783
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Intersegmental coordination of walking movements in stick insects.
    Ludwar BCh; Göritz ML; Schmidt J
    J Neurophysiol; 2005 Mar; 93(3):1255-65. PubMed ID: 15525808
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sensory feedback induced by front-leg stepping entrains the activity of central pattern generators in caudal segments of the stick insect walking system.
    Borgmann A; Hooper SL; Büschges A
    J Neurosci; 2009 Mar; 29(9):2972-83. PubMed ID: 19261892
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cooperative mechanisms between leg joints of Carausius morosus I. Nonspiking interneurons that contribute to interjoint coordination.
    Brunn DE
    J Neurophysiol; 1998 Jun; 79(6):2964-76. PubMed ID: 9636100
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Unravelling intra- and intersegmental neuronal connectivity between central pattern generating networks in a multi-legged locomotor system.
    Daun S; Mantziaris C; Tóth T; Büschges A; Rosjat N
    PLoS One; 2019; 14(8):e0220767. PubMed ID: 31386699
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Investigating inter-segmental connections between thoracic ganglia in the stick insect by means of experimental and simulated phase response curves.
    Tóth TI; Grabowska M; Rosjat N; Hellekes K; Borgmann A; Daun-Gruhn S
    Biol Cybern; 2015 Jun; 109(3):349-62. PubMed ID: 25712905
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Existence of a Long-Range Caudo-Rostral Sensory Influence in Terrestrial Locomotion.
    Grabowska M; Toth TI; Büschges A; Daun S
    J Neurosci; 2022 Jun; 42(24):4841-4851. PubMed ID: 35545434
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Descending octopaminergic neurons modulate sensory-evoked activity of thoracic motor neurons in stick insects.
    Stolz T; Diesner M; Neupert S; Hess ME; Delgado-Betancourt E; Pflüger HJ; Schmidt J
    J Neurophysiol; 2019 Dec; 122(6):2388-2413. PubMed ID: 31619113
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Role of local nonspiking interneurons in the generation of rhythmic motor activity in the stick insect.
    Büschges A
    J Neurobiol; 1995 Aug; 27(4):488-512. PubMed ID: 7561829
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pattern generation for walking and searching movements of a stick insect leg. I. Coordination of motor activity.
    Fischer H; Schmidt J; Haas R; Büschges A
    J Neurophysiol; 2001 Jan; 85(1):341-53. PubMed ID: 11152734
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synaptic drive contributing to rhythmic activation of motoneurons in the deafferented stick insect walking system.
    Büschges A; Ludwar BCh; Bucher D; Schmidt J; DiCaprio RA
    Eur J Neurosci; 2004 Apr; 19(7):1856-62. PubMed ID: 15078559
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cooperative mechanisms between leg joints of Carausius morosus II. Motor neuron activity and influence of conditional bursting interneuron.
    Brunn DE; Heuer A
    J Neurophysiol; 1998 Jun; 79(6):2977-85. PubMed ID: 9636101
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Interjoint coordination in the stick insect leg-control system: the role of positional signaling.
    Bucher D; Akay T; DiCaprio RA; Buschges A
    J Neurophysiol; 2003 Mar; 89(3):1245-55. PubMed ID: 12626610
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Intersegmental and local interneurons in the metathorax of the stick insect Carausius morosus that monitor middle leg position.
    Brunn DE; Dean J
    J Neurophysiol; 1994 Sep; 72(3):1208-19. PubMed ID: 7807205
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Thoracic leg motoneurons in the isolated CNS of adult Manduca produce patterned activity in response to pilocarpine, which is distinct from that produced in larvae.
    Johnston RM; Levine RB
    Invert Neurosci; 2002 Oct; 4(4):175-92. PubMed ID: 12488968
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The functional connectivity between the locust leg pattern generators and the subesophageal ganglion higher motor center.
    Knebel D; Rillich J; Nadler L; Pflüger HJ; Ayali A
    Neurosci Lett; 2019 Jan; 692():77-82. PubMed ID: 30391322
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Role of proprioceptive signals from an insect femur-tibia joint in patterning motoneuronal activity of an adjacent leg joint.
    Hess D; Büschges A
    J Neurophysiol; 1999 Apr; 81(4):1856-65. PubMed ID: 10200220
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rhythmic modulation of the responsiveness of locust sensory local interneurons by walking pattern generating networks.
    Wolf H; Laurent G
    J Neurophysiol; 1994 Jan; 71(1):110-8. PubMed ID: 8158223
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Central drive and proprioceptive control of antennal movements in the walking stick insect.
    Krause AF; Winkler A; Dürr V
    J Physiol Paris; 2013; 107(1-2):116-29. PubMed ID: 22728470
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A mathematical modeling study of inter-segmental coordination during stick insect walking.
    Daun-Gruhn S
    J Comput Neurosci; 2011 Apr; 30(2):255-78. PubMed ID: 20567889
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.