BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 28724992)

  • 21. Is more always better? How different 'doses' of exercise after incomplete spinal cord injury affects the membrane properties of deep dorsal horn interneurons.
    Rank MM; Galea MP; Callister R; Callister RJ
    Exp Neurol; 2018 Feb; 300():201-211. PubMed ID: 29146456
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Neurotransmission by neurons that use serotonin, noradrenaline, glutamate, glycine, and gamma-aminobutyric acid in the normal and injured spinal cord.
    Shapiro S
    Neurosurgery; 1997 Jan; 40(1):168-76; discussion 177. PubMed ID: 8971839
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Acute spinal cord injury (SCI) transforms how GABA affects nociceptive sensitization.
    Huang YJ; Lee KH; Murphy L; Garraway SM; Grau JW
    Exp Neurol; 2016 Nov; 285(Pt A):82-95. PubMed ID: 27639636
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Differential Activation of Pain Circuitry Neuron Populations in a Mouse Model of Spinal Cord Injury-Induced Neuropathic Pain.
    Brown EV; Malik AF; Moese ER; McElroy AF; Lepore AC
    J Neurosci; 2022 Apr; 42(15):3271-3289. PubMed ID: 35256528
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Temporal and spatial dynamics of peripheral afferent-evoked activity in the dorsal horn recorded in rat spinal cord slices.
    Yu F; Zhao ZY; He T; Yu YQ; Li Z; Chen J
    Brain Res Bull; 2017 May; 131():183-191. PubMed ID: 28458040
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Development of putative inhibitory neurons in the embryonic and postnatal mouse superficial spinal dorsal horn.
    Balázs A; Mészár Z; Hegedűs K; Kenyeres A; Hegyi Z; Dócs K; Antal M
    Brain Struct Funct; 2017 Jul; 222(5):2157-2171. PubMed ID: 27783222
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Both Ca2+-permeable and -impermeable AMPA receptors contribute to primary synaptic drive onto rat dorsal horn neurons.
    Tong CK; MacDermott AB
    J Physiol; 2006 Aug; 575(Pt 1):133-44. PubMed ID: 16763002
    [TBL] [Abstract][Full Text] [Related]  

  • 28. GABAergic and glycinergic interneuron expression during spinal cord development: dynamic interplay between inhibition and excitation in the control of ventral network outputs.
    Sibilla S; Ballerini L
    Prog Neurobiol; 2009 Sep; 89(1):46-60. PubMed ID: 19539686
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Altered synaptic input and GABAB receptor function in spinal superficial dorsal horn neurons in rats with diabetic neuropathy.
    Wang XL; Zhang HM; Chen SR; Pan HL
    J Physiol; 2007 Mar; 579(Pt 3):849-61. PubMed ID: 17218355
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Development of GABA-sensitive spasticity and rigidity in rats after transient spinal cord ischemia: a qualitative and quantitative electrophysiological and histopathological study.
    Kakinohana O; Hefferan MP; Nakamura S; Kakinohana M; Galik J; Tomori Z; Marsala J; Yaksh TL; Marsala M
    Neuroscience; 2006 Sep; 141(3):1569-83. PubMed ID: 16797137
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Human spinal GABA neurons alleviate spasticity and improve locomotion in rats with spinal cord injury.
    Gong C; Zheng X; Guo F; Wang Y; Zhang S; Chen J; Sun X; Shah SZA; Zheng Y; Li X; Yin Y; Li Q; Huang X; Guo T; Han X; Zhang SC; Wang W; Chen H
    Cell Rep; 2021 Mar; 34(12):108889. PubMed ID: 33761348
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Functional Organization of Cutaneous and Muscle Afferent Synapses onto Immature Spinal Lamina I Projection Neurons.
    Li J; Baccei ML
    J Neurosci; 2017 Feb; 37(6):1505-1517. PubMed ID: 28069928
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Modulation of inhibitory strength and kinetics facilitates regulation of persistent inward currents and motoneuron excitability following spinal cord injury.
    Venugopal S; Hamm TM; Crook SM; Jung R
    J Neurophysiol; 2011 Nov; 106(5):2167-79. PubMed ID: 21775715
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Reduction of spinal glycine receptor-mediated miniature inhibitory postsynaptic currents in streptozotocin-induced diabetic neuropathic pain.
    Chiu YC; Liao WT; Liu CK; Wu CH; Lin CR
    Neurosci Lett; 2016 Jan; 611():88-93. PubMed ID: 26598022
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Spinal inhibition and motor function in adults with spastic cerebral palsy.
    Condliffe EG; Jeffery DT; Emery DJ; Gorassini MA
    J Physiol; 2016 May; 594(10):2691-705. PubMed ID: 26842905
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Calretinin positive neurons form an excitatory amplifier network in the spinal cord dorsal horn.
    Smith KM; Browne TJ; Davis OC; Coyle A; Boyle KA; Watanabe M; Dickinson SA; Iredale JA; Gradwell MA; Jobling P; Callister RJ; Dayas CV; Hughes DI; Graham BA
    Elife; 2019 Nov; 8():. PubMed ID: 31713514
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Spinal PKCα inhibition and gene-silencing for pain relief: AMPAR trafficking at the synapses between primary afferents and sensory interneurons.
    Kopach O; Krotov V; Shysh A; Sotnic A; Viatchenko-Karpinski V; Dosenko V; Voitenko N
    Sci Rep; 2018 Jul; 8(1):10285. PubMed ID: 29980697
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Distinct forms of synaptic inhibition and neuromodulation regulate calretinin-positive neuron excitability in the spinal cord dorsal horn.
    Smith KM; Boyle KA; Mustapa M; Jobling P; Callister RJ; Hughes DI; Graham BA
    Neuroscience; 2016 Jun; 326():10-21. PubMed ID: 27045594
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Functional heterogeneity of calretinin-expressing neurons in the mouse superficial dorsal horn: implications for spinal pain processing.
    Smith KM; Boyle KA; Madden JF; Dickinson SA; Jobling P; Callister RJ; Hughes DI; Graham BA
    J Physiol; 2015 Oct; 593(19):4319-39. PubMed ID: 26136181
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Differential projections of excitatory and inhibitory dorsal horn interneurons relaying information from group II muscle afferents in the cat spinal cord.
    Bannatyne BA; Edgley SA; Hammar I; Jankowska E; Maxwell DJ
    J Neurosci; 2006 Mar; 26(11):2871-80. PubMed ID: 16540564
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.