BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

223 related articles for article (PubMed ID: 28725007)

  • 1. Far- and deep-ultraviolet surface plasmon resonance sensors working in aqueous solutions using aluminum thin films.
    Tanabe I; Tanaka YY; Watari K; Hanulia T; Goto T; Inami W; Kawata Y; Ozaki Y
    Sci Rep; 2017 Jul; 7(1):5934. PubMed ID: 28725007
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Direct optical measurements of far- and deep-ultraviolet surface plasmon resonance with different refractive indices.
    Tanabe I; Tanaka YY; Ryoki T; Watari K; Goto T; Kikawada M; Inami W; Kawata Y; Ozaki Y
    Opt Express; 2016 Sep; 24(19):21886-96. PubMed ID: 27661924
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhanced Surface Plasmon Resonance Wavelength Shifts by Molecular Electronic Absorption in Far- and Deep-Ultraviolet Regions.
    Tanabe I; Tanaka YY; Watari K; Inami W; Kawata Y; Ozaki Y
    Sci Rep; 2020 Jun; 10(1):9938. PubMed ID: 32555405
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Far- and Deep-Ultraviolet Surface Plasmon Resonance Sensor.
    Tanabe I; Tanaka YY
    Chem Rec; 2019 Jul; 19(7):1210-1219. PubMed ID: 30256528
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Approaches for deep-ultraviolet surface plasmon resonance sensors.
    Moreira C; Wang Y; Blair S; Chadwick E; Lee JY; Oliveira L; Lima A; Cruz R
    Opt Lett; 2020 Aug; 45(16):4642-4645. PubMed ID: 32797030
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sensitive Aluminum SPR Sensors Prepared by Thermal Evaporation Deposition.
    He C; Li Y; Yang Y; Fan H; Li D; Han X
    ACS Omega; 2023 Nov; 8(45):43188-43196. PubMed ID: 38024768
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Plasmon-Enhanced Autofluorescence Imaging of Organelles in Label-Free Cells by Deep-Ultraviolet Excitation.
    Kikawada M; Ono A; Inami W; Kawata Y
    Anal Chem; 2016 Jan; 88(2):1407-11. PubMed ID: 26669415
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Effect of Au/Ag Bimetallic Thin-Films on Surface Plasmon Resonance Properties Comparing with Those of Au and Ag Single Thin-Films.
    Kim SH; Kim TU; Jung HY; Ki HC; Kim DG; Lee BT
    J Nanosci Nanotechnol; 2018 Mar; 18(3):1777-1781. PubMed ID: 29448658
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Single-crystal sapphire-fiber optic sensors based on surface plasmon resonance spectroscopy for in situ monitoring.
    Kim YC; Masson JF; Booksh KS
    Talanta; 2005 Oct; 67(5):908-17. PubMed ID: 18970258
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dual-mode surface plasmon resonance sensor chip using a grating 3D-printed prism.
    Lertvachirapaiboon C; Baba A; Shinbo K; Kato K
    Anal Chim Acta; 2021 Feb; 1147():23-29. PubMed ID: 33485581
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rydberg transitions as a probe for structural changes and phase transition at polymer surfaces: an ATR-FUV-DUV and quantum chemical study of poly(3-hydroxybutyrate) and its nanocomposite with graphene.
    Beć KB; Morisawa Y; Kobashi K; Grabska J; Tanabe I; Tanimura E; Sato H; Wójcik MJ; Ozaki Y
    Phys Chem Chem Phys; 2018 Mar; 20(13):8859-8873. PubMed ID: 29542745
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Experimental Investigation of the Dielectric Constants of Thin Noble Metallic Films Using a Surface Plasmon Resonance Sensor.
    Tao L; Deng S; Gao H; Lv H; Wen X; Li M
    Sensors (Basel); 2020 Mar; 20(5):. PubMed ID: 32182920
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Plasmonic mode coupling and thin film sensing in metal-insulator-metal structures.
    Andam N; Refki S; Hayashi S; Sekkat Z
    Sci Rep; 2021 Jul; 11(1):15093. PubMed ID: 34301973
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Wavelength-selective plasmonic sensor based on chirped-pitch crossed surface relief gratings.
    Bdour Y; Escobedo C; Sabat RG
    Opt Express; 2019 Mar; 27(6):8429-8439. PubMed ID: 31052660
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Figure of Merit Enhancement of a Surface Plasmon Resonance Sensor Using a Low-Refractive-Index Porous Silica Film.
    Meng QQ; Zhao X; Lin CY; Chen SJ; Ding YC; Chen ZY
    Sensors (Basel); 2017 Aug; 17(8):. PubMed ID: 28796155
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Simultaneous measurement of refractive index and temperature for prism-based surface plasmon resonance sensors.
    Luo W; Wang R; Li H; Kou J; Zeng X; Huang H; Hu X; Huang W
    Opt Express; 2019 Jan; 27(2):576-589. PubMed ID: 30696142
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Local structures and dynamics of interfacial imidazolium-based ionic liquid depending on the electrode potential using electrochemical attenuated total reflectance ultraviolet spectroscopy.
    Imai M; Tanabe I; Sato T; Fukui KI
    Spectrochim Acta A Mol Biomol Spectrosc; 2022 May; 273():121040. PubMed ID: 35228085
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sensitivity Improvement of a Surface Plasmon Resonance Sensor Based on Two-Dimensional Materials Hybrid Structure in Visible Region: A Theoretical Study.
    Lin Z; Chen S; Lin C
    Sensors (Basel); 2020 Apr; 20(9):. PubMed ID: 32344827
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High-performance sensor based on surface plasmon resonance with chalcogenide prism and aluminum for detection in infrared.
    Jha R; Sharma AK
    Opt Lett; 2009 Mar; 34(6):749-51. PubMed ID: 19282920
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Deep-Ultraviolet Transparent Conductive MWCNT/SiO
    Nagai H; Ogawa N; Sato M
    Nanomaterials (Basel); 2021 May; 11(5):. PubMed ID: 34065343
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.