These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
179 related articles for article (PubMed ID: 28725057)
1. Efficient generation of single domain antibodies with high affinities and enhanced thermal stabilities. Shinozaki N; Hashimoto R; Fukui K; Uchiyama S Sci Rep; 2017 Jul; 7(1):5794. PubMed ID: 28725057 [TBL] [Abstract][Full Text] [Related]
2. Selection, characterization, and thermal stabilization of llama single domain antibodies towards Ebola virus glycoprotein. Liu JL; Shriver-Lake LC; Anderson GP; Zabetakis D; Goldman ER Microb Cell Fact; 2017 Dec; 16(1):223. PubMed ID: 29233140 [TBL] [Abstract][Full Text] [Related]
3. Physicochemical improvement of rabbit derived single-domain antibodies by substitutions with amino acids conserved in camelid antibodies. Shinozaki N; Hashimoto R; Noda M; Uchiyama S J Biosci Bioeng; 2018 Jun; 125(6):654-661. PubMed ID: 29398547 [TBL] [Abstract][Full Text] [Related]
4. Evaluation of disulfide bond position to enhance the thermal stability of a highly stable single domain antibody. Zabetakis D; Olson MA; Anderson GP; Legler PM; Goldman ER PLoS One; 2014; 9(12):e115405. PubMed ID: 25526640 [TBL] [Abstract][Full Text] [Related]
5. Negative tail fusions can improve ruggedness of single domain antibodies. Goldman ER; Brozozog-Lee PA; Zabetakis D; Turner KB; Walper SA; Liu JL; Anderson GP Protein Expr Purif; 2014 Mar; 95():226-32. PubMed ID: 24440507 [TBL] [Abstract][Full Text] [Related]
6. Contributions of the complementarity determining regions to the thermal stability of a single-domain antibody. Zabetakis D; Anderson GP; Bayya N; Goldman ER PLoS One; 2013; 8(10):e77678. PubMed ID: 24143255 [TBL] [Abstract][Full Text] [Related]
7. Enhanced production of a single domain antibody with an engineered stabilizing extra disulfide bond. Liu JL; Goldman ER; Zabetakis D; Walper SA; Turner KB; Shriver-Lake LC; Anderson GP Microb Cell Fact; 2015 Oct; 14():158. PubMed ID: 26449768 [TBL] [Abstract][Full Text] [Related]
8. Evaluation of a noncanonical Cys40-Cys55 disulfide linkage for stabilization of single-domain antibodies. Kim DY; Kandalaft H; Hussack G; Raphael S; Ding W; Kelly JF; Henry KA; Tanha J Protein Sci; 2019 May; 28(5):881-888. PubMed ID: 30803088 [TBL] [Abstract][Full Text] [Related]
9. Improvement of single domain antibody stability by disulfide bond introduction. Hagihara Y; Saerens D Methods Mol Biol; 2012; 911():399-416. PubMed ID: 22886265 [TBL] [Abstract][Full Text] [Related]
10. Importance of Hypervariable Region 2 for Stability and Affinity of a Shark Single-Domain Antibody Specific for Ebola Virus Nucleoprotein. Anderson GP; Teichler DD; Zabetakis D; Shriver-Lake LC; Liu JL; Lonsdale SG; Goodchild SA; Goldman ER PLoS One; 2016; 11(8):e0160534. PubMed ID: 27494523 [TBL] [Abstract][Full Text] [Related]
12. Preparation and characterization of novel IgG affinity resin coupling anti-Fc camelid single-domain antibodies. Tu Z; Xu Y; Fu J; Huang Z; Wang Y; Liu B; Tao Y J Chromatogr B Analyt Technol Biomed Life Sci; 2015 Mar; 983-984():26-31. PubMed ID: 25614967 [TBL] [Abstract][Full Text] [Related]
13. Improved production of single domain antibodies with two disulfide bonds by co-expression of chaperone proteins in the Escherichia coli periplasm. Shriver-Lake LC; Goldman ER; Zabetakis D; Anderson GP J Immunol Methods; 2017 Apr; 443():64-67. PubMed ID: 28131818 [TBL] [Abstract][Full Text] [Related]
14. Single domain antibody-alkaline phosphatase fusion proteins for antigen detection--analysis of affinity and thermal stability of single domain antibody. Liu JL; Zabetakis D; Lee AB; Goldman ER; Anderson GP J Immunol Methods; 2013 Jul; 393(1-2):1-7. PubMed ID: 23570946 [TBL] [Abstract][Full Text] [Related]
15. Enhancing Stability of Camelid and Shark Single Domain Antibodies: An Overview. Goldman ER; Liu JL; Zabetakis D; Anderson GP Front Immunol; 2017; 8():865. PubMed ID: 28791022 [TBL] [Abstract][Full Text] [Related]
16. A disulfide-stabilized human V Henry KA; Kandalaft H; Lowden MJ; Rossotti MA; van Faassen H; Hussack G; Durocher Y; Kim DY; Tanha J Mol Immunol; 2017 Oct; 90():190-196. PubMed ID: 28820969 [TBL] [Abstract][Full Text] [Related]
17. Single-domain antibodies and their utility. Baral TN; MacKenzie R; Arbabi Ghahroudi M Curr Protoc Immunol; 2013 Nov; 103():2.17.1-2.17.57. PubMed ID: 24510545 [TBL] [Abstract][Full Text] [Related]
18. Selection and characterization of single domain antibodies against human CD20. Liu JL; Zabetakis D; Goldman ER; Anderson GP Mol Immunol; 2016 Oct; 78():146-154. PubMed ID: 27639717 [TBL] [Abstract][Full Text] [Related]
19. Characterization of single-domain antibodies with an engineered disulfide bond. Hussack G; Mackenzie CR; Tanha J Methods Mol Biol; 2012; 911():417-29. PubMed ID: 22886266 [TBL] [Abstract][Full Text] [Related]
20. Site-specific labeling of cysteine-tagged camelid single-domain antibody-fragments for use in molecular imaging. Massa S; Xavier C; De Vos J; Caveliers V; Lahoutte T; Muyldermans S; Devoogdt N Bioconjug Chem; 2014 May; 25(5):979-88. PubMed ID: 24815083 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]