BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 28725057)

  • 1. Efficient generation of single domain antibodies with high affinities and enhanced thermal stabilities.
    Shinozaki N; Hashimoto R; Fukui K; Uchiyama S
    Sci Rep; 2017 Jul; 7(1):5794. PubMed ID: 28725057
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Selection, characterization, and thermal stabilization of llama single domain antibodies towards Ebola virus glycoprotein.
    Liu JL; Shriver-Lake LC; Anderson GP; Zabetakis D; Goldman ER
    Microb Cell Fact; 2017 Dec; 16(1):223. PubMed ID: 29233140
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Physicochemical improvement of rabbit derived single-domain antibodies by substitutions with amino acids conserved in camelid antibodies.
    Shinozaki N; Hashimoto R; Noda M; Uchiyama S
    J Biosci Bioeng; 2018 Jun; 125(6):654-661. PubMed ID: 29398547
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evaluation of disulfide bond position to enhance the thermal stability of a highly stable single domain antibody.
    Zabetakis D; Olson MA; Anderson GP; Legler PM; Goldman ER
    PLoS One; 2014; 9(12):e115405. PubMed ID: 25526640
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Negative tail fusions can improve ruggedness of single domain antibodies.
    Goldman ER; Brozozog-Lee PA; Zabetakis D; Turner KB; Walper SA; Liu JL; Anderson GP
    Protein Expr Purif; 2014 Mar; 95():226-32. PubMed ID: 24440507
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Contributions of the complementarity determining regions to the thermal stability of a single-domain antibody.
    Zabetakis D; Anderson GP; Bayya N; Goldman ER
    PLoS One; 2013; 8(10):e77678. PubMed ID: 24143255
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhanced production of a single domain antibody with an engineered stabilizing extra disulfide bond.
    Liu JL; Goldman ER; Zabetakis D; Walper SA; Turner KB; Shriver-Lake LC; Anderson GP
    Microb Cell Fact; 2015 Oct; 14():158. PubMed ID: 26449768
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evaluation of a noncanonical Cys40-Cys55 disulfide linkage for stabilization of single-domain antibodies.
    Kim DY; Kandalaft H; Hussack G; Raphael S; Ding W; Kelly JF; Henry KA; Tanha J
    Protein Sci; 2019 May; 28(5):881-888. PubMed ID: 30803088
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Improvement of single domain antibody stability by disulfide bond introduction.
    Hagihara Y; Saerens D
    Methods Mol Biol; 2012; 911():399-416. PubMed ID: 22886265
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Importance of Hypervariable Region 2 for Stability and Affinity of a Shark Single-Domain Antibody Specific for Ebola Virus Nucleoprotein.
    Anderson GP; Teichler DD; Zabetakis D; Shriver-Lake LC; Liu JL; Lonsdale SG; Goodchild SA; Goldman ER
    PLoS One; 2016; 11(8):e0160534. PubMed ID: 27494523
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multivalent display of single-domain antibodies.
    Zhang J; Mackenzie CR
    Methods Mol Biol; 2012; 911():445-56. PubMed ID: 22886268
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Preparation and characterization of novel IgG affinity resin coupling anti-Fc camelid single-domain antibodies.
    Tu Z; Xu Y; Fu J; Huang Z; Wang Y; Liu B; Tao Y
    J Chromatogr B Analyt Technol Biomed Life Sci; 2015 Mar; 983-984():26-31. PubMed ID: 25614967
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Improved production of single domain antibodies with two disulfide bonds by co-expression of chaperone proteins in the Escherichia coli periplasm.
    Shriver-Lake LC; Goldman ER; Zabetakis D; Anderson GP
    J Immunol Methods; 2017 Apr; 443():64-67. PubMed ID: 28131818
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Single domain antibody-alkaline phosphatase fusion proteins for antigen detection--analysis of affinity and thermal stability of single domain antibody.
    Liu JL; Zabetakis D; Lee AB; Goldman ER; Anderson GP
    J Immunol Methods; 2013 Jul; 393(1-2):1-7. PubMed ID: 23570946
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhancing Stability of Camelid and Shark Single Domain Antibodies: An Overview.
    Goldman ER; Liu JL; Zabetakis D; Anderson GP
    Front Immunol; 2017; 8():865. PubMed ID: 28791022
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A disulfide-stabilized human V
    Henry KA; Kandalaft H; Lowden MJ; Rossotti MA; van Faassen H; Hussack G; Durocher Y; Kim DY; Tanha J
    Mol Immunol; 2017 Oct; 90():190-196. PubMed ID: 28820969
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Single-domain antibodies and their utility.
    Baral TN; MacKenzie R; Arbabi Ghahroudi M
    Curr Protoc Immunol; 2013 Nov; 103():2.17.1-2.17.57. PubMed ID: 24510545
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Selection and characterization of single domain antibodies against human CD20.
    Liu JL; Zabetakis D; Goldman ER; Anderson GP
    Mol Immunol; 2016 Oct; 78():146-154. PubMed ID: 27639717
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of single-domain antibodies with an engineered disulfide bond.
    Hussack G; Mackenzie CR; Tanha J
    Methods Mol Biol; 2012; 911():417-29. PubMed ID: 22886266
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Site-specific labeling of cysteine-tagged camelid single-domain antibody-fragments for use in molecular imaging.
    Massa S; Xavier C; De Vos J; Caveliers V; Lahoutte T; Muyldermans S; Devoogdt N
    Bioconjug Chem; 2014 May; 25(5):979-88. PubMed ID: 24815083
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.