These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
179 related articles for article (PubMed ID: 28725057)
41. Joining the in vitro immunization of alpaca lymphocytes and phage display: rapid and cost effective pipeline for sdAb synthesis. Comor L; Dolinska S; Bhide K; Pulzova L; Jiménez-Munguía I; Bencurova E; Flachbartova Z; Potocnakova L; Kanova E; Bhide M Microb Cell Fact; 2017 Jan; 16(1):13. PubMed ID: 28114943 [TBL] [Abstract][Full Text] [Related]
42. The role of intra-domain disulfide bonds in heat-induced irreversible denaturation of camelid single domain VHH antibodies. Akazawa-Ogawa Y; Uegaki K; Hagihara Y J Biochem; 2016 Jan; 159(1):111-21. PubMed ID: 26289739 [TBL] [Abstract][Full Text] [Related]
43. Characterization of single-domain antibodies against Foot and Mouth Disease Virus (FMDV) serotype O from a camelid and imaging of FMDV in baby hamster kidney-21 cells with single-domain antibody-quantum dots probes. Wang D; Yang S; Yin S; Shang Y; Du P; Guo J; He J; Cai J; Liu X BMC Vet Res; 2015 May; 11():120. PubMed ID: 26001568 [TBL] [Abstract][Full Text] [Related]
44. Functional mutations in and characterization of VHH against Helicobacter pylori urease. Hoseinpoor R; Mousavi Gargari SL; Rasooli I; Rajabibazl M; Shahi B Appl Biochem Biotechnol; 2014 Mar; 172(6):3079-91. PubMed ID: 24492955 [TBL] [Abstract][Full Text] [Related]
45. A camel anti-lysozyme CDR3 only domain antibody selected from phage display VHH library acts as potent lysozyme inhibitor. Qiu L; Feng Y; Ma X; Li J Acta Biochim Biophys Sin (Shanghai); 2017 Jun; 49(6):513-519. PubMed ID: 28475681 [TBL] [Abstract][Full Text] [Related]
46. Role of a noncanonical disulfide bond in the stability, affinity, and flexibility of a VHH specific for the Listeria virulence factor InlB. Mendoza MN; Jian M; King MT; Brooks CL Protein Sci; 2020 Apr; 29(4):1004-1017. PubMed ID: 31981247 [TBL] [Abstract][Full Text] [Related]
47. Isolation and structural characterization of a Zn Kumar S; Mahendran I; Athreya A; Ranjan R; Penmatsa A J Biol Chem; 2020 Jan; 295(1):55-68. PubMed ID: 31699895 [TBL] [Abstract][Full Text] [Related]
48. Engineered high-affinity nanobodies recognizing staphylococcal Protein A and suitable for native isolation of protein complexes. Fridy PC; Thompson MK; Ketaren NE; Rout MP Anal Biochem; 2015 May; 477():92-4. PubMed ID: 25707320 [TBL] [Abstract][Full Text] [Related]
49. Highly efficient production of VHH antibody fragments in Brevibacillus choshinensis expression system. Mizukami M; Tokunaga H; Onishi H; Ueno Y; Hanagata H; Miyazaki N; Kiyose N; Ito Y; Ishibashi M; Hagihara Y; Arakawa T; Miyauchi A; Tokunaga M Protein Expr Purif; 2015 Jan; 105():23-32. PubMed ID: 25286401 [TBL] [Abstract][Full Text] [Related]
50. Pronounced effect of hapten binding on thermal stability of an anti-(4-hydroxy-3-nitrophenyl)acetyl antibody possessing a glycine residue at position 95 of the heavy chain. Sato Y; Inaba S; Fukada H; Azuma T; Oda M Mol Immunol; 2017 May; 85():130-136. PubMed ID: 28249223 [TBL] [Abstract][Full Text] [Related]
51. Co-evolution of affinity and stability of grafted amyloid-motif domain antibodies. Julian MC; Lee CC; Tiller KE; Rabia LA; Day EK; Schick AJ; Tessier PM Protein Eng Des Sel; 2015 Oct; 28(10):339-50. PubMed ID: 26386257 [TBL] [Abstract][Full Text] [Related]
52. Development and characterization of a camelid single-domain antibody directed to human CD22 biomarker. Faraji F; Tajik N; Behdani M; Shokrgozar MA; Zarnani AH; Shahhosseini F; Habibi-Anbouhi M Biotechnol Appl Biochem; 2018 Sep; 65(5):718-725. PubMed ID: 29543347 [TBL] [Abstract][Full Text] [Related]
53. Nanobodies: natural single-domain antibodies. Muyldermans S Annu Rev Biochem; 2013; 82():775-97. PubMed ID: 23495938 [TBL] [Abstract][Full Text] [Related]
54. Aggregation-resistant VHs selected by in vitro evolution tend to have disulfide-bonded loops and acidic isoelectric points. Arbabi-Ghahroudi M; To R; Gaudette N; Hirama T; Ding W; MacKenzie R; Tanha J Protein Eng Des Sel; 2009 Feb; 22(2):59-66. PubMed ID: 19033278 [TBL] [Abstract][Full Text] [Related]
55. [A Method for the Parallel and Sequential Generation of Single-Domain Antibodies for the Proteomic Analysis of Human Blood Plasma]. Goryainova OS; Ivanova TI; Rutovskaya MV; Tillib SV Mol Biol (Mosk); 2017; 51(6):985-996. PubMed ID: 29271962 [TBL] [Abstract][Full Text] [Related]
56. Preparation of a naïve library of camelid single domain antibodies. Olichon A; de Marco A Methods Mol Biol; 2012; 911():65-78. PubMed ID: 22886246 [TBL] [Abstract][Full Text] [Related]
57. Assessing the Aggregation Propensity of Single-Domain Antibodies upon Heat-Denaturation Employing the ΔT Kunz P Methods Mol Biol; 2022; 2446():233-244. PubMed ID: 35157276 [TBL] [Abstract][Full Text] [Related]
58. Development of synthetic light-chain antibodies as novel and potent HIV fusion inhibitors. Cunha-Santos C; Figueira TN; Borrego P; Oliveira SS; Rocha C; Couto A; Cantante C; Santos-Costa Q; Azevedo-Pereira JM; Fontes CM; Taveira N; Aires-Da-Silva F; Castanho MA; Veiga AS; Goncalves J AIDS; 2016 Jul; 30(11):1691-701. PubMed ID: 27058352 [TBL] [Abstract][Full Text] [Related]
59. Characterization of a high-affinity human antibody with a disulfide bridge in the third complementarity-determining region of the heavy chain. Almagro JC; Raghunathan G; Beil E; Janecki DJ; Chen Q; Dinh T; LaCombe A; Connor J; Ware M; Kim PH; Swanson RV; Fransson J J Mol Recognit; 2012 Mar; 25(3):125-35. PubMed ID: 22407976 [TBL] [Abstract][Full Text] [Related]