BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

363 related articles for article (PubMed ID: 28725266)

  • 1. Highly efficient methane generation from untreated microalgae biomass.
    Klassen V; Blifernez-Klassen O; Wibberg D; Winkler A; Kalinowski J; Posten C; Kruse O
    Biotechnol Biofuels; 2017; 10():186. PubMed ID: 28725266
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Wastewater-borne microalga Chlamydomonas sp.: A robust chassis for efficient biomass and biomethane production applying low-N cultivation strategy.
    Klassen V; Blifernez-Klassen O; Bax J; Kruse O
    Bioresour Technol; 2020 Nov; 315():123825. PubMed ID: 32693344
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Upflow anaerobic sludge blanket reactor--a review.
    Bal AS; Dhagat NN
    Indian J Environ Health; 2001 Apr; 43(2):1-82. PubMed ID: 12397675
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A novel one-stage cultivation/fermentation strategy for improved biogas production with microalgal biomass.
    Klassen V; Blifernez-Klassen O; Hoekzema Y; Mussgnug JH; Kruse O
    J Biotechnol; 2015 Dec; 215():44-51. PubMed ID: 26022425
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Efficient Anaerobic Digestion of Microalgae Biomass: Proteins as a Key Macromolecule.
    Magdalena JA; Ballesteros M; González-Fernandez C
    Molecules; 2018 May; 23(5):. PubMed ID: 29734773
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Thermophilic biogas production from microalgae-bacteria aggregates: biogas yield, community variation and energy balance.
    Carrillo-Reyes J; Buitrón G; Arcila JS; López-Gómez MO
    Chemosphere; 2021 Jul; 275():129898. PubMed ID: 33667771
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Anaerobic gaseous biofuel production using microalgal biomass - A review.
    Wirth R; Lakatos G; Böjti T; Maróti G; Bagi Z; Rákhely G; Kovács KL
    Anaerobe; 2018 Aug; 52():1-8. PubMed ID: 29803739
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Metagenome changes in the mesophilic biogas-producing community during fermentation of the green alga Scenedesmus obliquus.
    Wirth R; Lakatos G; Böjti T; Maróti G; Bagi Z; Kis M; Kovács A; Ács N; Rákhely G; Kovács KL
    J Biotechnol; 2015 Dec; 215():52-61. PubMed ID: 26087313
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Anaerobic digestion of microalgae as a necessary step to make microalgal biodiesel sustainable.
    Sialve B; Bernet N; Bernard O
    Biotechnol Adv; 2009; 27(4):409-16. PubMed ID: 19289163
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Efficiency and biotechnological aspects of biogas production from microalgal substrates.
    Klassen V; Blifernez-Klassen O; Wobbe L; Schlüter A; Kruse O; Mussgnug JH
    J Biotechnol; 2016 Sep; 234():7-26. PubMed ID: 27449486
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evaluation of thermal, ultrasonic and alkali pretreatments on mixed-microalgal biomass to enhance anaerobic methane production.
    Cho S; Park S; Seon J; Yu J; Lee T
    Bioresour Technol; 2013 Sep; 143():330-6. PubMed ID: 23811066
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Efficient anaerobic digestion of whole microalgae and lipid-extracted microalgae residues for methane energy production.
    Zhao B; Ma J; Zhao Q; Laurens L; Jarvis E; Chen S; Frear C
    Bioresour Technol; 2014 Jun; 161():423-30. PubMed ID: 24736123
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Anaerobic digestion of microalgal biomass for bioenergy production, removal of nutrients and microcystin: current status.
    Veerabadhran M; Gnanasekaran D; Wei J; Yang F
    J Appl Microbiol; 2021 Oct; 131(4):1639-1651. PubMed ID: 33421297
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Insights on the microbial communities developed during the anaerobic fermentation of raw and pretreated microalgae biomass.
    Llamas M; Magdalena JA; Greses S; Tomás-Pejó E; González-Fernández C
    Chemosphere; 2021 Jan; 263():127942. PubMed ID: 32835976
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Exploitation of algal-bacterial associations in a two-stage biohydrogen and biogas generation process.
    Wirth R; Lakatos G; Maróti G; Bagi Z; Minárovics J; Nagy K; Kondorosi É; Rákhely G; Kovács KL
    Biotechnol Biofuels; 2015; 8():59. PubMed ID: 25873997
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Growth phase-dependent biochemical composition of green microalgae: Theoretical considerations for biogas production.
    Klin M; Pniewski F; Latała A
    Bioresour Technol; 2020 May; 303():122875. PubMed ID: 32036327
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biogas from microalgae: an overview emphasizing pretreatment methods and their energy return on investment (EROI).
    Marques AL; Araújo OQF; Cammarota MC
    Biotechnol Lett; 2019 Feb; 41(2):193-201. PubMed ID: 30506454
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Thermal pretreatment and bioaugmentation improve methane yield of microalgal mix produced in thermophilic anaerobic digestate.
    Lavrič L; Cerar A; Fanedl L; Lazar B; Žitnik M; Logar RM
    Anaerobe; 2017 Aug; 46():162-169. PubMed ID: 28189831
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A critical review on anaerobic digestion of microalgae and macroalgae and co-digestion of biomass for enhanced methane generation.
    Ganesh Saratale R; Kumar G; Banu R; Xia A; Periyasamy S; Dattatraya Saratale G
    Bioresour Technol; 2018 Aug; 262():319-332. PubMed ID: 29576518
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Co-digestion of chicken manure and microalgae Chlorella 1067 grown in the recycled digestate: Nutrients reuse and biogas enhancement.
    Li R; Duan N; Zhang Y; Liu Z; Li B; Zhang D; Lu H; Dong T
    Waste Manag; 2017 Dec; 70():247-254. PubMed ID: 28939246
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.