These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

390 related articles for article (PubMed ID: 28725528)

  • 1. Battery-Supercapacitor Hybrid Devices: Recent Progress and Future Prospects.
    Zuo W; Li R; Zhou C; Li Y; Xia J; Liu J
    Adv Sci (Weinh); 2017 Jul; 4(7):1600539. PubMed ID: 28725528
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electrode Materials, Structural Design, and Storage Mechanisms in Hybrid Supercapacitors.
    Du X; Lin Z; Wang X; Zhang K; Hu H; Dai S
    Molecules; 2023 Sep; 28(17):. PubMed ID: 37687261
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A 1.9-V all-organic battery-supercapacitor hybrid device with high rate capability and wide temperature tolerance in a metal-free water-in-saltelectrolyte.
    Tsai HH; Lin TJ; Vedhanarayanan B; Tsai CC; Chen TY; Ji X; Lin TW
    J Colloid Interface Sci; 2022 Apr; 612():76-87. PubMed ID: 34979412
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Selenium-rich nickel cobalt bimetallic selenides with core-shell architecture enable superior hybrid energy storage devices.
    Liu YL; Yan C; Wang GG; Li F; Kang Q; Zhang HY; Han JC
    Nanoscale; 2020 Feb; 12(6):4040-4050. PubMed ID: 32016240
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Integrated System of Solar Cells with Hierarchical NiCo
    Yuan Y; Lu Y; Jia BE; Tang H; Chen L; Zeng YJ; Hou Y; Zhang Q; He Q; Jiao L; Leng J; Ye Z; Lu J
    Nanomicro Lett; 2019 May; 11(1):42. PubMed ID: 34137998
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fast-Charging High-Energy Battery-Supercapacitor Hybrid: Anodic Reduced Graphene Oxide-Vanadium(IV) Oxide Sheet-on-Sheet Heterostructure.
    Sahoo R; Lee TH; Pham DT; Luu THT; Lee YH
    ACS Nano; 2019 Sep; 13(9):10776-10786. PubMed ID: 31432663
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fabrication of a High-Energy Flexible All-Solid-State Supercapacitor Using Pseudocapacitive 2D-Ti
    Patil AM; Kitiphatpiboon N; An X; Hao X; Li S; Hao X; Abudula A; Guan G
    ACS Appl Mater Interfaces; 2020 Nov; 12(47):52749-52762. PubMed ID: 33185100
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Nonaqueous Potassium-Based Battery-Supercapacitor Hybrid Device.
    Fan L; Lin K; Wang J; Ma R; Lu B
    Adv Mater; 2018 May; 30(20):e1800804. PubMed ID: 29603424
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High-rate transition metal-based cathode materials for battery-supercapacitor hybrid devices.
    Wang C; Song Z; Shi P; Lv L; Wan H; Tao L; Zhang J; Wang H; Wang H
    Nanoscale Adv; 2021 Sep; 3(18):5222-5239. PubMed ID: 36132631
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Li-ion rechargeable battery: a perspective.
    Goodenough JB; Park KS
    J Am Chem Soc; 2013 Jan; 135(4):1167-76. PubMed ID: 23294028
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reliable Organic Carbonyl Electrode Materials Enabled by Electrolyte and Interfacial Chemistry Regulation.
    Lu Y; Ni Y; Chen J
    Acc Chem Res; 2024 Feb; 57(3):375-385. PubMed ID: 38240205
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Advanced Materials for Sodium-Ion Capacitors with Superior Energy-Power Properties: Progress and Perspectives.
    Zhang H; Hu M; Lv Q; Huang ZH; Kang F; Lv R
    Small; 2020 Apr; 16(15):e1902843. PubMed ID: 31550082
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Recent Advanced Supercapacitor: A Review of Storage Mechanisms, Electrode Materials, Modification, and Perspectives.
    Kumar N; Kim SB; Lee SY; Park SJ
    Nanomaterials (Basel); 2022 Oct; 12(20):. PubMed ID: 36296898
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Emerging trends in anion storage materials for the capacitive and hybrid energy storage and beyond.
    Dou Q; Wu N; Yuan H; Shin KH; Tang Y; Mitlin D; Park HS
    Chem Soc Rev; 2021 Jun; 50(12):6734-6789. PubMed ID: 33955977
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fe-Based Coordination Polymers as Battery-Type Electrodes in Semi-Solid-State Battery-Supercapacitor Hybrid Devices.
    Wang K; Wang S; Liu J; Guo Y; Mao F; Wu H; Zhang Q
    ACS Appl Mater Interfaces; 2021 Apr; 13(13):15315-15323. PubMed ID: 33760598
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hybrid nanostructures for energy storage applications.
    Mohana Reddy AL; Gowda SR; Shaijumon MM; Ajayan PM
    Adv Mater; 2012 Sep; 24(37):5045-64. PubMed ID: 22740354
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Novel Type of Battery-Supercapacitor Hybrid Device with Highly Switchable Dual Performances Based on a Carbon Skeleton/Mg
    Li N; Du Y; Feng QP; Huang GW; Xiao HM; Fu SY
    ACS Appl Mater Interfaces; 2017 Dec; 9(51):44828-44838. PubMed ID: 29200256
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Porous Cobalt Metal-Organic Frameworks as Active Elements in Battery-Supercapacitor Hybrid Devices.
    Wang K; Bi R; Huang M; Lv B; Wang H; Li C; Wu H; Zhang Q
    Inorg Chem; 2020 May; 59(10):6808-6814. PubMed ID: 32330019
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electrode Materials, Electrolytes, and Challenges in Nonaqueous Lithium-Ion Capacitors.
    Li B; Zheng J; Zhang H; Jin L; Yang D; Lv H; Shen C; Shellikeri A; Zheng Y; Gong R; Zheng JP; Zhang C
    Adv Mater; 2018 Apr; 30(17):e1705670. PubMed ID: 29527751
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Application of 2D Materials to Potassium-Ion Hybrid Capacitors.
    Zhang D; Li L; Deng J; Gou Y; Fang J; Cui H; Zhao Y; Shang K
    ChemSusChem; 2021 May; 14(9):1974-1986. PubMed ID: 33829675
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.