BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

447 related articles for article (PubMed ID: 28725924)

  • 1. Effect of training status on beta-range corticomuscular coherence in agonist vs. antagonist muscles during isometric knee contractions.
    Dal Maso F; Longcamp M; Cremoux S; Amarantini D
    Exp Brain Res; 2017 Oct; 235(10):3023-3031. PubMed ID: 28725924
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Impaired corticomuscular coherence during isometric elbow flexion contractions in humans with cervical spinal cord injury.
    Cremoux S; Tallet J; Dal Maso F; Berton E; Amarantini D
    Eur J Neurosci; 2017 Aug; 46(4):1991-2000. PubMed ID: 28699218
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cortical activity differs between position- and force-control knee extension tasks.
    Poortvliet PC; Tucker KJ; Finnigan S; Scott D; Sowman P; Hodges PW
    Exp Brain Res; 2015 Dec; 233(12):3447-57. PubMed ID: 26292962
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of the phase of force production on corticomuscular coherence with agonist and antagonist muscles.
    Desmyttere G; Mathieu E; Begon M; Simoneau-Buessinger E; Cremoux S
    Eur J Neurosci; 2018 Nov; 48(10):3288-3298. PubMed ID: 30141828
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Training-related decrease in antagonist muscles activation is associated with increased motor cortex activation: evidence of central mechanisms for control of antagonist muscles.
    Dal Maso F; Longcamp M; Amarantini D
    Exp Brain Res; 2012 Aug; 220(3-4):287-95. PubMed ID: 22710618
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Muscle dependency of corticomuscular coherence in upper and lower limb muscles and training-related alterations in ballet dancers and weightlifters.
    Ushiyama J; Takahashi Y; Ushiba J
    J Appl Physiol (1985); 2010 Oct; 109(4):1086-95. PubMed ID: 20689093
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Specific modulation of corticomuscular coherence during submaximal voluntary isometric, shortening and lengthening contractions.
    Glories D; Soulhol M; Amarantini D; Duclay J
    Sci Rep; 2021 Mar; 11(1):6322. PubMed ID: 33737659
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Training-related changes in the EMG-moment relationship during isometric contractions: Further evidence of improved control of muscle activation in strength-trained men?
    Amarantini D; Bru B
    J Electromyogr Kinesiol; 2015 Aug; 25(4):697-702. PubMed ID: 25908585
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Beta-range EEG-EMG coherence with isometric compensation for increasing modulated low-level forces.
    Chakarov V; Naranjo JR; Schulte-Mönting J; Omlor W; Huethe F; Kristeva R
    J Neurophysiol; 2009 Aug; 102(2):1115-20. PubMed ID: 19458142
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inhibitory interneuron circuits at cortical and spinal levels are associated with individual differences in corticomuscular coherence during isometric voluntary contraction.
    Matsuya R; Ushiyama J; Ushiba J
    Sci Rep; 2017 Mar; 7():44417. PubMed ID: 28290507
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Neurophysiological, behavioural and perceptual differences between wrist flexion and extension related to sensorimotor monitoring as shown by corticomuscular coherence.
    Divekar NV; John LR
    Clin Neurophysiol; 2013 Jan; 124(1):136-47. PubMed ID: 22959414
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Between-subject variance in the magnitude of corticomuscular coherence during tonic isometric contraction of the tibialis anterior muscle in healthy young adults.
    Ushiyama J; Suzuki T; Masakado Y; Hase K; Kimura A; Liu M; Ushiba J
    J Neurophysiol; 2011 Sep; 106(3):1379-88. PubMed ID: 21653712
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Antagonistic muscle prefatigue weakens the functional corticomuscular coupling during isometric elbow extension contraction.
    Wang L; Xie Z; Lu A; Lu T; Zhang S; Zheng F; Niu W
    Neuroreport; 2020 Mar; 31(5):372-380. PubMed ID: 31876688
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Contraction level-related modulation of corticomuscular coherence differs between the tibialis anterior and soleus muscles in humans.
    Ushiyama J; Masakado Y; Fujiwara T; Tsuji T; Hase K; Kimura A; Liu M; Ushiba J
    J Appl Physiol (1985); 2012 Apr; 112(8):1258-67. PubMed ID: 22302959
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Corticospinal interaction during isometric compensation for modulated forces with different frequencies.
    Naranjo JR; Wang X; Schulte-Mönting J; Huethe F; Maurer C; Hepp-Reymond MC; Kristeva R
    BMC Neurosci; 2010 Dec; 11():157. PubMed ID: 21194447
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Corticomuscular synchronization with small and large dynamic force output.
    Andrykiewicz A; Patino L; Naranjo JR; Witte M; Hepp-Reymond MC; Kristeva R
    BMC Neurosci; 2007 Nov; 8():101. PubMed ID: 18042289
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The influence of unilateral contraction of hand muscles on the contralateral corticomuscular coherence during bimanual motor tasks.
    Zheng Y; Gao L; Wang G; Wang Y; Yang Z; Wang X; Li T; Dang C; Zhu R; Wang J
    Neuropsychologia; 2016 May; 85():199-207. PubMed ID: 27018484
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Strength training, but not endurance training, reduces motor unit discharge rate variability.
    Vila-Chã C; Falla D
    J Electromyogr Kinesiol; 2016 Feb; 26():88-93. PubMed ID: 26586649
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Recovery patterns in electroencephalographic global field power during maximal isometric force production.
    Dunn-Lewis C; Flanagan SD; Comstock BA; Maresh CM; Volek JS; Denegar CR; Kupchak BR; Kraemer WJ
    J Strength Cond Res; 2011 Oct; 25(10):2818-27. PubMed ID: 21857362
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Short-term unilateral resistance training affects the agonist-antagonist but not the force-agonist activation relationship.
    Tillin NA; Pain MT; Folland JP
    Muscle Nerve; 2011 Mar; 43(3):375-84. PubMed ID: 21319165
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 23.