BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 28726108)

  • 1. Why does the bioluminescent fungus Armillaria mellea have luminous mycelium but nonluminous fruiting body?
    Purtov KV; Petushkov VN; Rodionova NS; Gitelson JI
    Dokl Biochem Biophys; 2017 May; 474(1):217-219. PubMed ID: 28726108
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bioluminescence expression during the transition from mycelium to mushroom in three North American Armillaria and Desarmillaria species.
    Mihail JD; Bilyeu L; Lalk SR
    Fungal Biol; 2018 Nov; 122(11):1064-1068. PubMed ID: 30342622
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification of hispidin as a bioluminescent active compound and its recycling biosynthesis in the luminous fungal fruiting body.
    Oba Y; Suzuki Y; Martins GNR; Carvalho RP; Pereira TA; Waldenmaier HE; Kanie S; Naito M; Oliveira AG; Dörr FA; Pinto E; Yampolsky IV; Stevani CV
    Photochem Photobiol Sci; 2017 Sep; 16(9):1435-1440. PubMed ID: 28766678
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Trans-3-hydroxyhispidin is not an actual bioluminescence substrate in pileus gills of the luminous fungus Mycena chlorophos.
    Teranishi K
    Biochem Biophys Res Commun; 2018 Sep; 504(1):190-195. PubMed ID: 30172376
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bioluminescence patterns among North American Armillaria species.
    Mihail JD
    Fungal Biol; 2015 Jun; 119(6):528-37. PubMed ID: 25986550
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A combination of NADHP and hispidin is not essential for bioluminescence in luminous fungal living gills of Mycena chlorophos.
    Teranishi K
    Luminescence; 2017 Aug; 32(5):866-872. PubMed ID: 28058809
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A reliable in vitro fruiting system for Armillaria mellea for evaluation of Agrobacterium tumefaciens transformation vectors.
    Ford KL; Baumgartner K; Henricot B; Bailey AM; Foster GD
    Fungal Biol; 2015 Oct; 119(10):859-869. PubMed ID: 26399182
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mercury in fruiting bodies of dark honey fungus (Armillaria solidipes) and beneath substratum soils collected from spatially distant areas.
    Falandysz J; Mazur A; Kojta AK; Jarzyńska G; Drewnowska M; Dryżałowska A; Nnorom IC
    J Sci Food Agric; 2013 Mar; 93(4):853-8. PubMed ID: 22836787
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bioluminescence characteristics of the fruiting body of Mycena chlorophos.
    Mori K; Kojima S; Maki S; Hirano T; Niwa H
    Luminescence; 2011; 26(6):604-10. PubMed ID: 21370386
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Tale Of Two Luciferins: Fungal and Earthworm New Bioluminescent Systems.
    Tsarkova AS; Kaskova ZM; Yampolsky IV
    Acc Chem Res; 2016 Nov; 49(11):2372-2380. PubMed ID: 27696815
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Second bioluminescence-activating component in the luminous fungus Mycena chlorophos.
    Teranishi K
    Luminescence; 2017 Mar; 32(2):182-189. PubMed ID: 27271205
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Analysis of indole compounds in Armillaria mellea fruiting bodies.
    Muszyńska B; Maślanka A; Ekiert H; Sułkowska-Ziaja K
    Acta Pol Pharm; 2011; 68(1):93-7. PubMed ID: 21485706
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Effect of organic and inorganic toxic compounds on luminescence of luminous fungi].
    Vydriakova GA; Gusev AA; Medvedeva SE
    Prikl Biokhim Mikrobiol; 2011; 47(3):324-9. PubMed ID: 21790033
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dynamics of bioluminescence by Armillaria gallica, A. mellea and A. tabescens.
    Mihail JD; Bruhn JN
    Mycologia; 2007; 99(3):341-50. PubMed ID: 17883025
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Grafting as a method for studying development in the filamentous fungus Podospora anserina.
    Silar P
    Fungal Biol; 2011 Aug; 115(8):793-802. PubMed ID: 21802060
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Substrate binding tunes the reactivity of hispidin 3-hydroxylase, a flavoprotein monooxygenase involved in fungal bioluminescence.
    Tong Y; Trajkovic M; Savino S; van Berkel WJH; Fraaije MW
    J Biol Chem; 2020 Nov; 295(47):16013-16022. PubMed ID: 32917724
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Genomic and proteomic dissection of the ubiquitous plant pathogen, Armillaria mellea: toward a new infection model system.
    Collins C; Keane TM; Turner DJ; O'Keeffe G; Fitzpatrick DA; Doyle S
    J Proteome Res; 2013 Jun; 12(6):2552-70. PubMed ID: 23656496
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structure, cytotoxic activity and mechanism of protoilludane sesquiterpene aryl esters from the mycelium of Armillaria mellea.
    Li Z; Wang Y; Jiang B; Li W; Zheng L; Yang X; Bao Y; Sun L; Huang Y; Li Y
    J Ethnopharmacol; 2016 May; 184():119-27. PubMed ID: 26952552
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Fruiting Body Formation of Armillaria mellea on Oak Sawdust Medium Covered with Ground Raw Carrots.
    Shim JO; Chang KC; Lee YS; Park CH; Kim HY; Lee UY; Lee TS; Lee MW
    Mycobiology; 2006 Dec; 34(4):206-8. PubMed ID: 24039500
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bioluminescence and chemiluminescence abilities of trans-3-hydroxyhispidin on the luminous fungus Mycena chlorophos.
    Teranishi K
    Luminescence; 2018 Nov; 33(7):1235-1242. PubMed ID: 30109785
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.