These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 28726404)

  • 1. Predicting Optimal DEER Label Positions to Study Protein Conformational Heterogeneity.
    Mittal S; Shukla D
    J Phys Chem B; 2017 Oct; 121(42):9761-9770. PubMed ID: 28726404
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Maximizing Kinetic Information Gain of Markov State Models for Optimal Design of Spectroscopy Experiments.
    Mittal S; Shukla D
    J Phys Chem B; 2018 Dec; 122(48):10793-10805. PubMed ID: 30351125
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reconciling membrane protein simulations with experimental DEER spectroscopy data.
    Mittal S; Dutta S; Shukla D
    Phys Chem Chem Phys; 2023 Feb; 25(8):6253-6262. PubMed ID: 36757376
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Methodology for rigorous modeling of protein conformational changes by Rosetta using DEER distance restraints.
    Del Alamo D; Jagessar KL; Meiler J; Mchaourab HS
    PLoS Comput Biol; 2021 Jun; 17(6):e1009107. PubMed ID: 34133419
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modeling structural transitions from the periplasmic-open state of lactose permease and interpretations of spin label experiments.
    Zhuang X; Klauda JB
    Biochim Biophys Acta; 2016 Jul; 1858(7 Pt A):1541-52. PubMed ID: 27107553
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structural refinement from restrained-ensemble simulations based on EPR/DEER data: application to T4 lysozyme.
    Islam SM; Stein RA; McHaourab HS; Roux B
    J Phys Chem B; 2013 May; 117(17):4740-54. PubMed ID: 23510103
    [TBL] [Abstract][Full Text] [Related]  

  • 7. CHARMM-GUI DEER facilitator for spin-pair distance distribution calculations and preparation of restrained-ensemble molecular dynamics simulations.
    Qi Y; Lee J; Cheng X; Shen R; Islam SM; Roux B; Im W
    J Comput Chem; 2020 Feb; 41(5):415-420. PubMed ID: 31329318
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Simulating the distance distribution between spin-labels attached to proteins.
    Islam SM; Roux B
    J Phys Chem B; 2015 Mar; 119(10):3901-11. PubMed ID: 25645890
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Amplitude of pancreatic lipase lid opening in solution and identification of spin label conformational subensembles by combining continuous wave and pulsed EPR spectroscopy and molecular dynamics.
    Ranaldi S; Belle V; Woudstra M; Bourgeas R; Guigliarelli B; Roche P; Vezin H; Carrière F; Fournel A
    Biochemistry; 2010 Mar; 49(10):2140-9. PubMed ID: 20136147
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Probing the solution structure of the E. coli multidrug transporter MdfA using DEER distance measurements with nitroxide and Gd(III) spin labels.
    Yardeni EH; Bahrenberg T; Stein RA; Mishra S; Zomot E; Graham B; Tuck KL; Huber T; Bibi E; Mchaourab HS; Goldfarb D
    Sci Rep; 2019 Aug; 9(1):12528. PubMed ID: 31467343
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dynamics and Environmental Characteristics of Spin Labels in a KvAP Voltage Sensor by Molecular Dynamics Simulations.
    Le Nguyen Ngoc L; Pandey RB; Sompornpisut P
    J Phys Chem B; 2021 Jan; 125(3):748-756. PubMed ID: 33459015
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spin labeling and Double Electron-Electron Resonance (DEER) to Deconstruct Conformational Ensembles of HIV Protease.
    Casey TM; Fanucci GE
    Methods Enzymol; 2015; 564():153-87. PubMed ID: 26477251
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structural Characterization of Biomolecules through Atomistic Simulations Guided by DEER Measurements.
    Marinelli F; Fiorin G
    Structure; 2019 Feb; 27(2):359-370.e12. PubMed ID: 30528595
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rotameric preferences of a protein spin label at edge-strand β-sheet sites.
    Cunningham TF; Pornsuwan S; Horne WS; Saxena S
    Protein Sci; 2016 May; 25(5):1049-60. PubMed ID: 26948069
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Simulation vs. reality: a comparison of in silico distance predictions with DEER and FRET measurements.
    Klose D; Klare JP; Grohmann D; Kay CW; Werner F; Steinhoff HJ
    PLoS One; 2012; 7(6):e39492. PubMed ID: 22761805
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Restrained-ensemble molecular dynamics simulations based on distance histograms from double electron-electron resonance spectroscopy.
    Roux B; Islam SM
    J Phys Chem B; 2013 May; 117(17):4733-9. PubMed ID: 23510121
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Application of spherical harmonics for DEER data analysis in systems with a conformational distribution.
    Potapov A
    J Magn Reson; 2020 Jul; 316():106769. PubMed ID: 32574865
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantitative Agreement between Conformational Substates of Holo Calcium-Loaded Calmodulin Detected by Double Electron-Electron Resonance EPR and Predicted by Molecular Dynamics Simulations.
    Schmidt T; Wang D; Jeon J; Schwieters CD; Clore GM
    J Am Chem Soc; 2022 Jul; 144(27):12043-12051. PubMed ID: 35759799
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Substrate-dependent unfolding of the energy coupling motif of a membrane transport protein determined by double electron-electron resonance.
    Xu Q; Ellena JF; Kim M; Cafiso DS
    Biochemistry; 2006 Sep; 45(36):10847-54. PubMed ID: 16953570
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Subtle pH differences trigger single residue motions for moderating conformations of calmodulin.
    Atilgan AR; Aykut AO; Atilgan C
    J Chem Phys; 2011 Oct; 135(15):155102. PubMed ID: 22029336
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.